Bull Semen Obtained on Beef Farms by Electroejaculation: Sperm Quality in the First Two Hours of Storing with Different Extenders and Holding Temperatures

  1. Santiago Pernas 1
  2. Aitor Fernández-Novo 1
  3. Clara Barrajon-Masa 2
  4. Patricia Mozas 2
  5. Natividad Pérez-Villalobos 1
  6. Bárbara Martín-Maldonado 1
  7. Agustín Oliet 2
  8. Susana Astiz 3
  9. Sonia S. Pérez-Garnelo 3
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario
    info

    Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario

    Madrid, España

  3. 3 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

Revista:
Animals

ISSN: 2076-2615

Año de publicación: 2023

Volumen: 13

Número: 9

Páginas: 1561

Tipo: Artículo

DOI: 10.3390/ANI13091561 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Animals

Resumen

Sperm quality decreases over time, so bull semen may need to be preserved after field collection. However, the effect of handling such semen samples from commercial farms and placing them in very short–term storage has not been elucidated. Therefore, ejaculate from 25 bulls from 1 dairy and 14 beef cattle farms were collected under farm conditions and evaluated for semen quality during the first two hours after collection. Two commercial extenders (AndroMed® and BIOXcell®) and two different storage temperatures (5 °C and room temperature) were used to evaluate the influence on semen quality and sperm kinetics in ejaculates grouped into three evaluation times, based on time since collection (Time 1: <75 min, n = 7; Time 2: 75–105 min, n = 11; and Time 3: 105–120 min, n = 7). Classical semen parameters, sperm motion kinetics by CASA and colony-forming units were assessed. The differences between both extenders in curvilinear and straight–line velocities (VCL and VSL) for the different time groups (Time 2 and Time 3) were statistically significant for p < 0.05. AndroMed® showed lower VSL, straightness and linearity in sperm compared to BIOXcell® (p < 0.05). In conclusion, AndroMed® induced more curvilinear movement, while BIOXcell® stimulated straighter motility.

Información de financiación

Funding: This research received a partial funding of INIA–CSIC (RZP2021-003. Banco de Recursos Zoogenéticos).

Referencias bibliográficas

  • 1. Bustani, G.S.; Baiee, F.H. Semen Extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Vet. World 2021, 14, 1220–1233. [CrossRef] [PubMed]
  • 2. Vishwanath, R.; Shannon, P. Storage of bovine semen in liquid and frozen state. Anim. Reprod. Sci. 2000, 62, 23–53. [CrossRef]
  • 3. Murphy, E.M.; Murphy, C.; O’Meara, C.; Dunne, G.; Eivers, B.; Lonergan, P.; Fair, S. A Comparison of semen diluents on the in vitro and in vivo fertility of liquid bull semen. J. Dairy Sci. 2017, 100, 1541–1554. [CrossRef] [PubMed]
  • 4. Raheja, N.; Grewal, S.; Sharma, N.; Kumar, N.; Choudhary, S. A review on semen extenders and additives used in cattle and buffalo bull semen preservation. J. Entom. Zool. 2018, 6, 239–245.
  • 5. Rodriguez-Martinez, H. Assisted reproductive techniques for cattle breeding in developing countries: A critical appraisal of their value and limitations. Reprod. Domest. Anim. 2012, 47, 21–26. [CrossRef]
  • 6. Foote, R.H.; Kaprotht, M.T. Large batch freezing of bull semen: Effect of time of freezing and fructose on fertility. J. Dairy Sci. 2002, 85, 453–456. [CrossRef]
  • 7. Akyol, N.; Varı¸slı, Ö.; Kızıl, S.H. Effects of long-term storage on some spermatological parameters in cryopreserved bull semen. Cryoletters 2018, 39, 354–358.
  • 8. Dias, E.A.R.; Campanholi, S.P.; Rossi, G.F.; de Freitas Dell’Aqua, C.P.; Dell’Aqua, J.A.; Papa, F.O.; Zorzetto, M.F.; de Paz, C.C.P.; Oliveira, L.Z.; Mercadante, M.E.Z.; et al. Evaluation of cooling and freezing systems of bovine semen. Anim. Reprod. Sci. 2018, 195, 102–111. [CrossRef]
  • 9. Woelders, H.; Chaveiro, A. Theoretical prediction of “optimal” freezing programmes. Cryobiology 2004, 49, 258–271. [CrossRef]
  • 10. John Morris, G.; Acton, E.; Murray, B.J.; Fonseca, F. Freezing Injury: The special case of the sperm cell. Cryobiology 2012, 64, 71–80. [CrossRef]
  • 11. Chaveiro, A.; Machado, L.; Frijters, A.; Engel, B.; Woelders, H. Improvement of parameters of freezing medium and freezing protocol for bull sperm using two osmotic supports. Theriogenology 2006, 65, 1875–1890. [CrossRef]
  • 12. Thomas, C.A.; Garner, D.L.; Dejarnette, J.M.; Marshall, C.E. Effect of cryopreservation on bovine sperm organelle function and viability as determined by flow cytometry. Biol. Reprod. 1998, 58, 786–793. [CrossRef]
  • 13. Adami, L.N.G.; Belardin, L.B.; Lima, B.T.; Jeremias, J.T.; Antoniassi, M.P.; Okada, F.K.; Bertolla, R.P. Effect of in vitro vitamin e (alpha-tocopherol) supplementation in human spermatozoon submitted to oxidative stress. Andrologia 2018, 50, e12959. [CrossRef] [PubMed]
  • 14. Ugur, M.R.; Saber Abdelrahman, A.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arifiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in cryopreservation of bull sperm. Front. Vet. Sci. 2019, 6, 268. [CrossRef] [PubMed]
  • 15. Kumar, N.; Singh, S.D.; Jayachandran, C. Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin and its interaction with diclofenac after intravenous administration in buffalo calves. Vet. J. 2003, 165, 302–306. [CrossRef] [PubMed]
  • 16. Bailey, E.; Fenning, N.; Chamberlain, S.; Devlin, L.; Hopkisson, J.; Tomlinson, M. Validation of sperm counting methods using limits of agreement. J. Androl. 2007, 28, 364–373. [CrossRef]
  • 17. Chuawongboon, P.; Sirisathien, S.; Pongpeng, J.; Sakhong, D.; Nagai, T.; Vongpralub, T. Effects of supplementation of iodixanol to semen extender on quality and fertilization ability of frozen-thawed Thai native bull sperm. Anim. Sci. J. 2017, 88, 1311–1320. [CrossRef]
  • 18. Ghuman, S.P.S.; Brar, P.S. Comparison of in vitro and in vivo Fertilizing Potential of Buffalo Bull Semen Frozen in Egg Yolk-, Soya Bean Lecithin- and Liposome-Based Extenders. Reprod. Domest. Anim. 2018, 53, 195–202. [CrossRef]
  • 19. O’Hara, L.; Hanrahan, J.P.; Richardson, L.; Donovan, A.; Fair, S.; Evans, A.C.O.; Lonergan, P. Effect of storage duration, storage temperature, and diluent on the viability and fertility of fresh Ram sperm. Theriogenology 2010, 73, 541–549. [CrossRef]
  • 20. Batellier, F.; Vidament, M.; Fauquant, J.; Duchamp, G.; Arnaud, G.; Yvon, J.M.; Magistrini, M. Advances in cooled semen technology. Anim. Reprod. Sci. 2001, 68, 181–190. [CrossRef]
  • 21. Herold, F.C.; De Haas, K.; Cooper, D.; Colenbrander, B.; Nothling, J.O.; Theunisen, W.; Spillings, B.; Gerber, D. Comparison of three different media for freezing of epididymal sperm from the African buffalo and influence of equilibration time on the post-thaw sperm quality. Onderstepoort J. Vet. Res. 2004, 71, 203–210. [CrossRef] [PubMed]
  • 22. Verberckmoes, S.; Van Soom, A.; Dewulf, J.; de Kruif, A. Comparison of three diluents for the storage of fresh bovine semen. Theriogenology 2005, 63, 912–922. [CrossRef] [PubMed]
  • 23. Bompart, D.; García-Molina, A.; Valverde, A.; Caldeira, C.; Yániz, J.; Núñez de Murga, M.; Soler, C. CASA-Mot Technology: How results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 2018, 30, 810–819. [CrossRef] [PubMed]
  • 24. Kowalczyk, A.; Kuczaj, M.; Czerniawska-Pi ˛atkowska, E. The role of environmental optimization for storing bulls’ sperm cells. Syst. Biol. Reprod. Med. 2020, 66, 300–310. [CrossRef] Animals 2023, 13, 1561 12 of 14
  • 25. Schenk, J.L. Review: Principles of maximizing bull semen production at genetic centers. Animal 2018, 12, 142–147. [CrossRef] [PubMed]
  • 26. Taaffe, P.; O’Meara, C.M.; Stiavnicka, M.; Byrne, C.J.; Eivers, B.; Lonergan, P.; Fair, S. Increasing the frequency of ejaculate collection in young dairy bulls increases semen production and field fertility. Theriogenology 2022, 182, 45–52. [CrossRef]
  • 27. Murphy, E.M.; Kelly, A.K.; O’Meara, C.; Eivers, B.; Lonergan, P.; Fair, S. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. J. Anim. Sci. 2018, 96, 2408–2418. [CrossRef] [PubMed]
  • 28. Mathevon, M.; Buhr, M.M.; Dekkers, J.C. Environmental, management, and genetic factors affecting semen production in Holstein bulls. J Dairy Sci 1998, 81, 3321–3330. [CrossRef]
  • 29. Borges-Silva, J.C.; Silva, M.R.; Marinho, D.B.; Nogueira, E.; Sampaio, D.C.; Oliveira, L.O.F.; Abreu, U.G.P.; Mourão, G.B.; Sartori, R. Cooled semen for fixed-time artificial insemination in beef cattle. Reprod. Fertil. Dev. 2016, 28, 1004–1008. [CrossRef]
  • 30. Satake, N.; Edwards, S.; Tutt, D.; McGowan, M.R.; Boe-Hansen, G.B. Investigation of in vitro measurable sperm attributes and their influence on electroejaculated bull semen with a fixed-time artificial insemination protocol in Australian Bos Indicus cattle. Reprod. Domest. Anim. 2018, 53, 414–422. [CrossRef]
  • 31. Zuidema, D.; Kerns, K.; Sutovsky, P. An Exploration of current and perspective semen analysis and sperm selection for livestock artificial insemination. Animals 2021, 11, 3563. [CrossRef]
  • 32. Bousseau, S.; Brillard, J.P.; Marguant-Le Guienne, B.; Guérin, B.; Camus, A.; Lechat, M. Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents. Theriogenology 1998, 50, 699–706. [CrossRef] [PubMed]
  • 33. Fernandez-Novo, A.; Santos-Lopez, S.; Barrajon-Masa, C.; Mozas, P.; de Mercado, E.; Caceres, E.; Garrafa, A.; Gonzalez-Martin, J.V.; Perez-Villalobos, N.; Oliet, A.; et al. Effect of extender, storage time and temperature on kinetic parameters (CASA) on bull semen samples. Biology 2021, 10, 806. [CrossRef] [PubMed]
  • 34. Fernandez-Novo, A.; Santos-Lopez, S.; Barrajon-Masa, C.; Mozas, P.; de Mercado, E.; Caceres, E.; Garrafa, A.; Gonzalez-Martin, J.V.; Perez-Villalobos, N.; Oliet, A.; et al. Effects of extender type, storage time, and temperature on bull semen parameters. Biology 2021, 10, 630. [CrossRef] [PubMed]
  • 35. García-Paloma, J.A.; Pérez Garnelo, S.S.; Montoya Monsalve, G.; Astiz Blanco, S. Aptitud reproductiva en toros de monta natural. II. Valoración Física Colect. Valoración Semin. Boletín ANEMBE 2017, 115, 17–36.
  • 36. Barth, A.D. Bull Breeding Soundness Evaluation Manual, 2nd ed.; The Western Canadian Association of Bovine Practitioners: Saskatoon, SK, Canada, 2000.
  • 37. Entwistle, K.; Fordyce, G. Evaluating and Reporting Bull Fertility, 1st ed.; Australian Association of Cattle Veterinarians: Sydney, NSW, Australia, 2003.
  • 38. Penny, C. Examination of Bulls for Breding Soundness. An Illustrated Guide. In Proceedings of the International Bull Fertility Conference, Westport, Ireland, 27–30 May 2018; pp. 1–66.
  • 39. Tamuli, M.K.; Watson, P.F. Use of a simple staining technique to distinguish acrosomal changes in the live sperm sub-population. Anim. Reprod. Sci. 1994, 35, 247–254. [CrossRef]
  • 40. Pintado, B.; de la Fuente, J.; Roldan, E.R. Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or hoechst 33258, or to eosin: Accuracy in the assessment of cell viability. J. Reprod. Fertil. 2000, 118, 145–152. [CrossRef]
  • 41. Fordyce, G.; Entwistle, K.; Norman, S.; Perry, V.; Gardiner, B.; Fordyce, P. Standardising bull breeding soundness evaluations and reporting in Australia. Theriogenology 2006, 66, 1140–1148. [CrossRef]
  • 42. Aires, V.A.; Hinsch, K.D.; Mueller-Schloesser, F.; Bogner, K.; Mueller-Schloesser, S.; Hinsch, E. In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen. Theriogenology 2003, 60, 269–279. [CrossRef]
  • 43. Kathiravan, P.; Kalatharan, J.; Karthikeya, G.; Rengarajan, K.; Kadirvel, G. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system—A Review. Reprod. Domest. Anim. 2011, 46, 165–172. [CrossRef]
  • 44. Hyakutake, T.; Sato, K.; Sugita, K. Study of bovine sperm motility in shear-thinning viscoelastic fluids. J. Biomech. 2019, 88, 130–137. [CrossRef] [PubMed]
  • 45. Víquez, L.; Barquero, V.; Soler, C.; Roldan, E.R.S.; Valverde, A. Kinematic sub-populations in bull spermatozoa: A comparison of classical and Bayesian approaches. Biology 2020, 9, 138. [CrossRef] [PubMed]
  • 46. Van Wagtendonk-de Leeuw, A.M.; Haring, R.M.; Kaal-Lansbergen, L.M.T.E.; den Daas, J.H.G. Fertility results using bovine semen cryopreserved with extenders based on egg yolk and soy bean extract. Theriogenology 2000, 54, 57–67. [CrossRef]
  • 47. Rehman, F.; Zhao, C.; Shah, M.A.; Qureshi, M.S.; Wang, X. Semen Extenders and Artificial Insemination in Ruminants. Available online: https://www.semanticscholar.org/paper/Semen-Extenders-and-Artificial-Insemination-in-Rehman-Zhao/026803e3 26742407ab60a33c8ea220d9e41d0e56 (accessed on 28 April 2021).
  • 48. Singh, K.; Confer, A.W.; Step, D.L.; Rizzi, T.; Wyckoff III, J.H.; Weng, H.-Y.; Ritchey, J.W. Cytokine expression by pulmonary leukocytes from calves challenged with wild-type and leukotoxin-deficient Mannheimia haemolytica. Vet. J. 2012, 192, 112–119. [CrossRef] [PubMed]
  • 49. Muiño, R.; Peña, A.I.; Rodríguez, A.; Tamargo, C.; Hidalgo, C.O. Effects of cryopreservation on the motile sperm subpopulations in semen from Asturiana de los Valles bulls. Theriogenology 2009, 72, 860–868. [CrossRef] [PubMed] Animals 2023, 13, 1561 13 of 14
  • 50. Hallap, T.; Jaakma, U.; Rodriguez-Martinez, H. Changes in semen quality in Estonian Holstein ai bulls at 3, 5 and 7 years of age. Reprod. Domest. Anim. 2006, 41, 214–218. [CrossRef]
  • 51. Pillet, E.; Labbe, C.; Batellier, F.; Duchamp, G.; Beaumal, V.; Anton, M.; Desherces, S.; Schmitt, E.; Magistrini, M. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology 2012, 77, 268–279. [CrossRef]
  • 52. Contri, A.; Valorz, C.; Faustini, M.; Wegher, L.; Carluccio, A. Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa. Theriogenology 2010, 74, 424–435. [CrossRef]
  • 53. Verstegen, J.; Iguer-Ouada, M.; Onclin, K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 2002, 57, 149–179. [CrossRef]
  • 54. Celeghini, E.C.C.; de Arruda, R.P.; de Andrade, A.F.C.; Nascimento, J.; Raphael, C.F.; Rodrigues, P.H.M. Effects that bovine sperm cryopreservation using two different extenders has on sperm membranes and chromatin. Anim. Reprod. Sci. 2008, 104, 119–131. [CrossRef]
  • 55. Hyakutake, T.; Mori, K.; Sato, K. Effects of surrounding fluid on motility of hyperactivated bovine sperm. J. Biomech. 2018, 71, 183–189. [CrossRef] [PubMed]
  • 56. Miller, D.J. Review: The epic journey of sperm through the female reproductive tract. Animal 2018, 12, s110–s120. [CrossRef] [PubMed]
  • 57. Hyakutake, T.; Sugita, K.; Ujifuku, S.; Sakurai, R.; Murakami, R.; Hayamizu, Y. Experimental study on the effect of flow in microfluidic channel on bovine sperm navigation. J. Biomech. 2021, 118, 110290. [CrossRef]
  • 58. Hernández-Corredor, L.; Nivia-Osuna, A.; Hernández-Villamizar, D.; Rubio-Parada, J.; Quintero-Moreno, A. Evaluación de la motilidad espermática a través del sistema C.A.S.A de semen caprino criopreservado bajo diferentes medios diluyentes. Biology 2013, 18, 16–27. [CrossRef]
  • 59. Harayama, H. Flagellar Hyperactivation of bull and boar spermatozoa. Reprod. Med. Biol. 2018, 17, 442–448. [CrossRef]
  • 60. Silva, N.C.; Leão, K.M.; Pádua, J.T.; Marques, T.C.; Neto, F.R.A.; Dode, M.A.N.; Cunha, A.T.M. Effect of different cryopreservation extenders added with antioxidants on semen quality and in vitro embryo production efficiency in cattle. Acad. Bras. Cienc. 2021, 93, e20191229. [CrossRef]
  • 61. Chaudhari, D.V.; Dhami, A.J.; Hadiya, K.K.; Patel, J.A. Relative efficacy of egg yolk and soya milk-based extenders for cryopreservation (−196 ◦C) of buffalo semen. Vet. World 2015, 8, 239–244. [CrossRef]
  • 62. Vera-Munoz, O.; Amirat-Briand, L.; Diaz, T.; Vásquez, L.; Schmidt, E.; Desherces, S.; Anton, M.; Bencharif, D.; Tainturier, D. Effect of semen dilution to low-sperm number per dose on motility and functionality of cryopreserved bovine spermatozoa using low-density lipoproteins (ldl) extender: Comparison to Triladyl and Bioxcell. Theriogenology 2009, 71, 895–900. [CrossRef]
  • 63. Crespilho, A.M.; Sá Filho, M.F.; Dell’Aqua, J.A.; Nichi, M.; Monteiro, G.A.; Avanzi, B.R.; Martins, A.; Papa, F.O. Comparison of in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or new lecithin based extenders. Livestock Sci. 2012, 149, 1–6. [CrossRef]
  • 64. Hyakutake, T.; Suzuki, H.; Yamamoto, S. Effect of viscosity on motion characteristics of bovine sperm. J. Aero Aqua Bio-Mech. 2015, 4, 63–70. [CrossRef]
  • 65. Kirkman-Brown, J.C.; Smith, D.J. Sperm motility: Is viscosity fundamental to progress? Mol. Human Reprod. 2011, 17, 539–544. [CrossRef] [PubMed]
  • 66. Thun, R.; Hurtado, M.; Janett, F. Comparison of Biociphos-Plus® and TRIS-egg yolk extender for cryopreservation of bull semen. Theriogenology 2002, 57, 1087–1094. [CrossRef] [PubMed]
  • 67. Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17.e3. [CrossRef]
  • 68. Nagy, Á.; Polichronopoulos, T.; Gáspárdy, A.; Solti, L.; Cseh, S. Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Vet. Hung. 2015, 63, 370–381. [CrossRef]
  • 69. Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [CrossRef] [PubMed]
  • 70. Peña, A.I.; Adán, S.; Quintela, L.A.; Becerra, J.J.; Herradón, P.G. Relationship between motile sperm subpopulations identified in frozen-thawed dog semen samples and their ability to bind to the zona pellucida of canine oocytes. Reprod. Domest. Anim. 2018, 53, 14–22. [CrossRef]
  • 71. Gallardo Bustillos, J.O.; Vargas Sandoval, C.A. Evaluación de Tres Diluyentes para Criopreservar Semen Bovino de Toros Cruce Sahiwal (Bos taurus) en el Trópico Húmedo. Bachelor’s Thesis, Universidad de las Fuerzas Armadas ESPE, Carrera de Ingeniería Agropecuaria, Sangolquí, Ecuador, 2015.
  • 72. Yániz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C.; Yániz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C. CASA-mot in mammals: An update. Reprod. Fertil. Dev. 2018, 30, 799–809. [CrossRef]
  • 73. Zaferani, M.; Javi, F.; Mokhtare, A.; Li, P.; Abbaspourrad, A. Rolling controls sperm navigation in response to the dynamic rheological properties of the environment. eLife 2021, 10, e68693. [CrossRef]
  • 74. Sánchez-Partida, L.G.; Windsor, D.P.; Eppleston, J.; Setchell, B.P.; Maxwell, W.M. Fertility and its relationship to motility characteristics of spermatozoa in ewes after cervical, transcervical, and intrauterine insemination with frozen-thawed ram semen. J. Androl. 1999, 20, 280–288.
  • 75. Mortimer, S.T. CASA—Practical aspects. J. Androl. 2000, 21, 515–524. Animals 2023, 13, 1561 14 of 14
  • 76. Aitken, R.J.; Sutton, M.; Warner, P.; Richardson, D.W. Relationship between the movement characteristics of human spermatozoa and their ability to penetrate cervical mucus and zona-free hamster oocytes. J. Reprod. Fertil. 1985, 73, 441–449. [CrossRef]
  • 77. Feneux, D.; Serres, C.; Jouannet, P. Sliding spermatozoa: A dyskinesia responsible for human infertility? Fertil. Steril. 1985, 44, 508–511. [CrossRef]
  • 78. Mortimer, D.; Pandya, I.J.; Sawers, R.S. Relationship between human sperm motility characteristics and sperm penetration into
  • human cervical mucus in vitro. J. Reprod. Fertil. 1986, 78, 93–102. [CrossRef] 79. Marshburn, P.B.; McIntire, D.; Carr, B.R.; Byrd, W. Spermatozoal characteristics from fresh and frozen donor semen and their correlation with fertility outcome after intrauterine insemination. Fertil. Steril. 1992, 58, 179–186. [CrossRef] [PubMed]
  • 80. Oliveira, L.Z.; de Arruda, R.P.; de Andrade, A.F.C.; Celeghini, E.C.C.; dos Santos, R.M.; Beletti, M.E.; Peres, R.F.G.; Oliveira, C.S.; Hossepian de Lima, V.F.M. Assessment of field fertility and several in vitro sperm characteristics following the use of different Angus Sires in a timed-AI program with suckled Nelore cows. Livestock Sci. 2012, 146, 38–46. [CrossRef]
  • 81. Shojaei, H.; Kroetsch, T.; Wilde, R.; Blondin, P.; Kastelic, J.P.; Thundathil, J.C. Moribund sperm in frozen-thawed semen, and sperm motion end points post-thaw and post-swim-up, are related to fertility in Holstein AI bulls. Theriogenology 2012, 77, 940–951. [CrossRef] [PubMed]
  • 82. Labarca, J. New concepts in pharmacokinetics: Must we think again how to use the antibiotic? Rev. Chil. Infectol. 2002, 19, S33–S37. [CrossRef]
  • 83. Kaka, A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Khumran, A.M.; Sarsaifi, K.; Behan, A.A.; Kaka, U.; Ebrahimi, M. α-linolenic acid supplementation in BioXcell® extender can improve the quality of post-cooling and frozen-thawed bovine sperm. Anim. Reprod. Sci. 2015, 153, 1–7. [CrossRef]