All-atom catalytic cycle of Lactobacillus nucleoside 2’-deoxyribosyltransferases

  1. Pedro A. Sanchez-Murcia 1
  2. Jon del Arco 2
  3. Almudena Perona 2
  4. Jesús Fernández-Lucas 23
  5. Federico Gago 4
  6. Leticia González 1
  7. José M. Mancheño 5
  1. 1 University of Vienna
    info

    University of Vienna

    Viena, Austria

    ROR https://ror.org/03prydq77

  2. 2 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  3. 3 Universidad de la Costa
    info

    Universidad de la Costa

    Barranquilla, Colombia

    ROR https://ror.org/01v5nhr20

  4. 4 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  5. 5 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

Konferenzberichte:
BIOTRANS 2019

Datum der Publikation: 2019

Kongress: BIOTRANS 2019 celebrado del 7 al 11 de julio de 2019 en Groningen, The Netherlands. Organized by University of Groningen

Art: Kongress-Poster

Zusammenfassung

We have recently reported the characterization and use of nucleoside 2’-deoxyribosyltransferases(NDTs) isolated from different microorganisms for the synthesis of nucleoside analogues.[1]Although the promiscuity of these enzymes allows them to recognize a broad range of non-naturalsubstrates,[2] there is still room for protein engineering on this family of enzymes to expand theproduct repertoire and enhance the overall reaction yields. To do this, it is necessary to understandthe catalytic mechanism of these enzymes. In this communication we face this question. We studythe catalytic reaction mechanism of nucleoside 2’-deoxyribosyltransferases of Lactobacillusleichmannii (LlNDT) by means of quantum mechanics / molecular mechanics simulations. We havemodeled the two chemical processes of the accepted reaction mechanism: a nucleophilic attack anda proton transfer. Our results support an oxocarbenium species as a reaction intermediate,supporting an SN1-like reaction mechanism in this family of enzymes. Our mechanistic proposal hasbeen validated by the good agreement found with experimental kinetic data of the wild-type enzymeand Glu98Asp, Tyr7Ala, and Met125Ala variants. As proof of concept, we also applied ourmechanistic proposal to solving the substrate specificity shown by LlNDT towards two non-naturalsubstrates.[3] Altogether, this complete understanding of the

Bibliographische Referenzen

  • 1. (a) E. Pérez, P. A. Sánchez-Murcia, J. Jordaan, M. D. Blanco, J. M. Mancheño, F. Gago, J. FernándezLucas (2018) ChemCatChem 10: 4406-4416; (b) J. Del Arco, P. A. Sánchez-Murcia, J. M. Mancheño, F. Gago, J. Fernández-Lucas (2018) Appl. Microbiol. Biotechnol. 102: 6947-6957; (c) N. Crespo, P. A. SánchezMurcia, F. Gago, J. Cejudo-Sanches, M. A. Galmes, J. Fernández-Lucas, J. M. Mancheño (2017) Appl. Microbiol. Biotechnol. 101: 7187-7200.
  • 2. R. Tadeusz, L.-M. Ewa, K. Anna, R. Ewa (2006) Curr. Med. Chem. 13: 3165-3189.
  • 3. (a) Vichier-Guerre, L. Dugué, F. Bonhomme, S. Pochet (2016) Org. Biomol. Chem. 14: 3638-3653; (b) S. Vichier-Guerre, L. Dugué, F. Bonhomme, S. Pochet (2017) Org. Biomol. Chem. 15: 8193-8203