All-atom catalytic cycle of Lactobacillus nucleoside 2’-deoxyribosyltransferases
- Pedro A. Sanchez-Murcia 1
- Jon del Arco 2
- Almudena Perona 2
- Jesús Fernández-Lucas 23
- Federico Gago 4
- Leticia González 1
- José M. Mancheño 5
-
1
University of Vienna
info
-
2
Universidad Europea de Madrid
info
-
3
Universidad de la Costa
info
-
4
Universidad de Alcalá
info
-
5
Consejo Superior de Investigaciones Científicas
info
Datum der Publikation: 2019
Kongress: BIOTRANS 2019 celebrado del 7 al 11 de julio de 2019 en Groningen, The Netherlands. Organized by University of Groningen
Art: Kongress-Poster
Zusammenfassung
We have recently reported the characterization and use of nucleoside 2’-deoxyribosyltransferases(NDTs) isolated from different microorganisms for the synthesis of nucleoside analogues.[1]Although the promiscuity of these enzymes allows them to recognize a broad range of non-naturalsubstrates,[2] there is still room for protein engineering on this family of enzymes to expand theproduct repertoire and enhance the overall reaction yields. To do this, it is necessary to understandthe catalytic mechanism of these enzymes. In this communication we face this question. We studythe catalytic reaction mechanism of nucleoside 2’-deoxyribosyltransferases of Lactobacillusleichmannii (LlNDT) by means of quantum mechanics / molecular mechanics simulations. We havemodeled the two chemical processes of the accepted reaction mechanism: a nucleophilic attack anda proton transfer. Our results support an oxocarbenium species as a reaction intermediate,supporting an SN1-like reaction mechanism in this family of enzymes. Our mechanistic proposal hasbeen validated by the good agreement found with experimental kinetic data of the wild-type enzymeand Glu98Asp, Tyr7Ala, and Met125Ala variants. As proof of concept, we also applied ourmechanistic proposal to solving the substrate specificity shown by LlNDT towards two non-naturalsubstrates.[3] Altogether, this complete understanding of the
Bibliographische Referenzen
- 1. (a) E. Pérez, P. A. Sánchez-Murcia, J. Jordaan, M. D. Blanco, J. M. Mancheño, F. Gago, J. FernándezLucas (2018) ChemCatChem 10: 4406-4416; (b) J. Del Arco, P. A. Sánchez-Murcia, J. M. Mancheño, F. Gago, J. Fernández-Lucas (2018) Appl. Microbiol. Biotechnol. 102: 6947-6957; (c) N. Crespo, P. A. SánchezMurcia, F. Gago, J. Cejudo-Sanches, M. A. Galmes, J. Fernández-Lucas, J. M. Mancheño (2017) Appl. Microbiol. Biotechnol. 101: 7187-7200.
- 2. R. Tadeusz, L.-M. Ewa, K. Anna, R. Ewa (2006) Curr. Med. Chem. 13: 3165-3189.
- 3. (a) Vichier-Guerre, L. Dugué, F. Bonhomme, S. Pochet (2016) Org. Biomol. Chem. 14: 3638-3653; (b) S. Vichier-Guerre, L. Dugué, F. Bonhomme, S. Pochet (2017) Org. Biomol. Chem. 15: 8193-8203