Epidemic Diffusion Network of Spain: A Mobility Model to Characterize the Transmission Routes of Disease

  1. Del-Águila-Mejía, Javier 123
  2. García-García, David 24
  3. Rojas-Benedicto, Ayelén 245
  4. Rosillo, Nicolás 6
  5. Guerrero-Vadillo, María 24
  6. Peñuelas, Marina 24
  7. Ramis, Rebeca 24
  8. Gómez-Barroso, Diana 24
  9. Donado Campos, Juan de Mata 14
  1. 1 Departamento de Medicina Preventiva y Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid. C. Arzobispo Morcillo 4, 28029 Madrid, Spain
  2. 2 Centro Nacional de Epidemiología, Instituto de Salud Carlos IIII, Calle de Melchor Fernández Almagro 5, 28029 Madrid, Spain
  3. 3 Servicio de Medicina Preventiva, Hospital Universitario de Móstoles, Calle Río Júcar s/n, 28935 Móstoles, Spain
  4. 4 Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
  5. 5 Universidad Nacional de Educación a Distancia (UNED), Calle de Bravo Murillo 38, 28015 Madrid, Spain
  6. 6 Servicio de Medicina Preventiva, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain
Revista:
International Journal of Environmental Research and Public Health

ISSN: 1660-4601

Año de publicación: 2023

Volumen: 20

Número: 5

Páginas: 4356

Tipo: Artículo

DOI: 10.3390/IJERPH20054356 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Environmental Research and Public Health

Resumen

Human mobility drives the geographical diffusion of infectious diseases at different scales, but few studies focus on mobility itself. Using publicly available data from Spain, we define a Mobility Matrix that captures constant flows between provinces by using a distance-like measure of effective distance to build a network model with the 52 provinces and 135 relevant edges. Madrid, Valladolid and Araba/Álaba are the most relevant nodes in terms of degree and strength. The shortest routes (most likely path between two points) between all provinces are calculated. A total of 7 mobility communities were found with a modularity of 63%, and a relationship was established with a cumulative incidence of COVID-19 in 14 days (CI14) during the study period. In conclusion, mobility patterns in Spain are governed by a small number of high-flow connections that remain constant in time and seem unaffected by seasonality or restrictions. Most of the travels happen within communities that do not completely represent political borders, and a wave-like spreading pattern with occasional long-distance jumps (small-world properties) can be identified. This information can be incorporated into preparedness and response plans targeting locations that are at risk of contagion preventively, underscoring the importance of coordination between administrations when addressing health emergencies.

Información de financiación

Financiadores

Referencias bibliográficas

  • World Health Organization (2020). WHO Coronavirus (COVID-19) Dashboard 2020.
  • Brauer, F., van den Driessche, P., and Wu, J. (2008). Mathematical Epidemiology, Springer.
  • Chang, (2021), Nature, 589, pp. 82, 10.1038/s41586-020-2923-3
  • Charu, V., Zeger, S., Gog, J., Bjørnstad, O.N., Kissler, S., Simonsen, L., and Viboud, C. (2017). Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol., 13.
  • Badr, (2020), Lancet Infect. Dis., 20, pp. 1247, 10.1016/S1473-3099(20)30553-3
  • Balcan, (2010), J. Comput. Sci., 1, pp. 132, 10.1016/j.jocs.2010.07.002
  • Brockmann, (2013), Science, 342, pp. 1337, 10.1126/science.1245200
  • Grantz, (2020), Nat. Commun., 11, pp. 1, 10.1038/s41467-020-18190-5
  • Kang, (2020), Sci. Data, 7, pp. 1, 10.1038/s41597-020-00734-5
  • Oliver, (2020), Sci. Adv., 6, pp. eabc0764, 10.1126/sciadv.abc0764
  • Pepe, (2020), Sci. Data, 7, pp. 230, 10.1038/s41597-020-00575-2
  • Jiang, (2020), Glob. Health Res. Policy, 5, pp. 1
  • Kraemer, (2020), Science, 368, pp. 493, 10.1126/science.abb4218
  • Gibbs, (2020), Nat. Commun., 11, pp. 5012, 10.1038/s41467-020-18783-0
  • Martino, (2020), Sci. Total Environ., 741, pp. 140489, 10.1016/j.scitotenv.2020.140489
  • Cintia, P., Fadda, D., Giannotti, F., Pappalardo, L., Rinzivillo, S., Boschi, T., Chiaromonte, F., Bonato, P., Fabbri, F., and Penone, F. (2006). The relationship between human mobility and viral transmissibility during the COVID-19 epidemics in Italy. arXiv.
  • Mazzoli, M., Pepe, E., Mateo, D., Cattuto, C., Gauvin, L., Bajardi, P., and Ramasco, J.J. (2021). Interplay between mobility, multi-seeding and lockdowns shapes COVID-19 local impact. PLoS Comput. Biol., 17.
  • Kissler, (2020), Nat. Commun., 11, pp. 4674, 10.1038/s41467-020-18271-5
  • Kishore, (2021), Sci. Rep., 11, pp. 6995, 10.1038/s41598-021-86297-w
  • Jia, (2020), Nature, 582, pp. 389, 10.1038/s41586-020-2284-y
  • Li, Z., Li, H., Zhang, X., and Zhao, C. (2021). Estimation of Human Mobility Patterns for Forecasting the Early Spread of Disease. Healthcare, 9.
  • Keeling, (2005), J. R. Soc. Interface., 2, pp. 295, 10.1098/rsif.2005.0051
  • Vespignani, (2001), Phys. Rev. Lett., 86, pp. 3200, 10.1103/PhysRevLett.86.3200
  • Keeling, (2005), Theor. Popul. Biol., 67, pp. 1, 10.1016/j.tpb.2004.08.002
  • Silk, (2019), Philos. Trans. R. Soc. Lond. B. Biol. Sci., 374, pp. 20180211, 10.1098/rstb.2018.0211
  • Silk, (2017), BioScience, 67, pp. 245, 10.1093/biosci/biw175
  • Bell, (1999), Soc. Netw., 21, pp. 1, 10.1016/S0378-8733(98)00010-0
  • (2023, February 26). Ministerio de Transportes, Movilidad y Agenda Urbana. Estudio de Movilidad con Big Data. Available online: https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data.
  • (2023, February 26). Instituto de Salud Carlos III. Situación y evolución de la pandemia de COVID-19 en España. Available online: https://cnecovid.isciii.es/covid19/.
  • Instituto Nacional de Estadística (INE) INEbase. Available online: https://www.ine.es/dyngs/INEbase/listaoperaciones.htm.
  • Dijkstra, (1959), Numer. Math., 1, pp. 269, 10.1007/BF01386390
  • Csardi, (2006), InterJournal, Complex Systems, 1695, pp. 1
  • Barrat, (2004), Proc. Natl. Acad. Sci. USA, 101, pp. 3747, 10.1073/pnas.0400087101
  • Dehmer, M., and Basak, S.C. (2012). Statistical and Machine Learning Approaches for Network Analysis, Wiley.
  • Pons, P., and Latapy, M. Computing communities in large networks using random walks (long version). arXiv, 2005.
  • Rosvall, (2008), PNAS, 105, pp. 1118, 10.1073/pnas.0706851105
  • Smith, (2020), Am. J. Prev. Med., 59, pp. 597, 10.1016/j.amepre.2020.04.015
  • R Core Team (2020). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.
  • Rinzivillo, (2012), Künstl. Intell., 26, pp. 253, 10.1007/s13218-012-0181-8
  • Jo, (2021), Sci. Rep., 11, pp. 8581, 10.1038/s41598-021-87837-0
  • Nagarajan, K., Muniyandi, M., Palani, B., and Sellappan, S. (2020). Social network analysis methods for exploring SARS-CoV-2 contact tracing data. BMC Med. Res. Methodol., 20.
  • Farine, (2015), J. Anim. Ecol., 84, pp. 1144, 10.1111/1365-2656.12418
  • Hébert-Dufresne, L., Young, J.-G., Bedson, J., Skrip, L.A., Pedi, D., Jalloh, M.F., Raulier, B., Lapointe-Gagné, O., Jambai, A., and Allard, A. The network epidemiology of an Ebola epidemic. arXiv, 2021.
  • Maheshwari, (2020), Appl. Netw. Sci., 5, pp. 100, 10.1007/s41109-020-00344-5
  • Barabási, A.-L. (2016). Network Science, Cambridge University Press.
  • Watts, (1998), Nature, 393, pp. 440, 10.1038/30918
  • Rosillo, N., Del-Águila-Mejía, J., Rojas-Benedicto, A., Guerrero-Vadillo, M., Peñuelas, M., Mazagatos, C., Segú-Tell, J., Ramis, R., and Gómez-Barroso, D. (2021). Real time surveillance of COVID-19 space and time clusters during the summer 2020 in Spain. BMC Public Health, 21.
  • Rozins, (2018), Ecol. Evol., 8, pp. 12044, 10.1002/ece3.4664
  • Sah, (2017), Proc. Natl. Acad. Sci. USA, 114, pp. 4165, 10.1073/pnas.1613616114
  • Iannelli, (2017), Phys. Rev. E., 95, pp. 12313, 10.1103/PhysRevE.95.012313