Approaches for Noise Barrier Effectiveness Evaluation Based on In Situ “Insertion Loss” Determination

  1. Barba Salvador, Antonio I. 1
  2. Martínez Orozco, Juan Miguel 1
  1. 1 School of Architecture, Engineering and Design, Universidad Europea de Madrid, Madrid, Spain
Libro:
Noise Control
  1. Marco Caniato
  2. Federica Bettarello

Editorial: IntechOpen

ISBN: 9781803560120

Año de publicación: 2023

Páginas: 1-124

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.104397 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

In situ evaluation of the effectiveness of noise barriers may be based on the assessment of their intrinsic or extrinsic characteristics. The evaluation of intrinsic characteristics is based on acoustic properties, such as noise barrier absorption or insulation. The evaluation of the extrinsic characteristics is based on the calculation of the barrier Insertion Loss, which is defined as the difference in the noise level before and after the installation of the barrier. Insertion Loss is calculated using two different approaches: the direct and indirect methods. The direct method is used when the barrier has not been installed yet or can be removed, while the indirect method is used when the barrier is already installed and cannot be easily removed. This chapter describes the different approaches used in the scientific literature for in situ evaluation of the effectiveness of noise barriers and discusses the noise attenuation levels obtained with each approach.

Referencias bibliográficas

  • World Health Organization (WHO). Environmental Noise Guidelines for the European Region. Copenhagen: WHO Regional Office for Europe; 2018
  • European Environment Agency (EEA). Reported Data on Noise Exposure Covered by Directive 2002/49/EC. Copenhagen: European Environment Agency; 2019
  • European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution (ETC/ATNI). Noise exposure scenarios in 2020 and 2030 outlooks for EU 28. In: ETC/ATNI Report 3/2019. Kjeller, Norway: European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution; 2019
  • Federal Highway Administration (FHWA). Summary of Noise Barriers Constructed by December 31, 2019. Available from: https://www.fhwa.dot.gov/environment/noise/noise_barriers/inventory [Accessed: 07 January 2022]
  • Yamamoto K. Japanese experience to reduce road traffic noise by barriers with noise reducing devices. EuroNoise 2015. Maastricht, The Netherlands. 31 May-3 June 2015
  • Kitamura T, Torii Y. Japanese Experience with Highway Noise and Noise Abatement Measures. Conference on Transportation and Land Use Planning Abroad, Ithaca, New York, July 22-23, 1975 1976.
  • Maekawa Z. Noise reduction by screens. Applied Acoustics. 1968;1:157-173
  • Kurze UJ, Anderson GS. Sound attenuation by barriers. Applied Acoustics. 1971;4:35-53. DOI: 10.1016/0003-682X(71)90024-7
  • Moreland JB, Musa RS. The performance of acoustic barrier. Noise Control Engineering. 1973;1:98-101
  • Kurze UJ. Noise reduction by barriers. Journal of the Acoustical Society of America. 1974;55:504-518. DOI: 10.1121/1.1914528
  • Pierce AD. Diffraction of sound around corners and over wide barriers. Journal of the Acoustical Society of America. 1974;55:941-955
  • Barry TM, Reagan J. FHWA traffic noise prediction model. In: Report No. FHWA-RD-77-108. Washington, DC: Federal Highway Administration; 1978
  • Arenas PG. Potential problems with environmental sound barriers when used in mitigating surface transportation noise. Science of the Total Environment. 2008;405:173-179. DOI: 10.1016/j.scitotenv.2008.06.049
  • Sun L, Zhao Y, Zhang J, Chen D, Zhang X. Research and application of noise barriers in highway construction. E3S Web of Conferences. 2021;233:01087. DOI: 10.1051/e3sconf/202123301087
  • European Commission (EC). Noise abatement approaches. In: Future Brief 17. Bristol: Science Communication Unit, UWE; 2017
  • Conference of European Directors of Roads (CEDR). State of the art in managing road traffic noise: Noise barriers. In: Technical Report 2017-02. Brussels, Belgium: CEDR; 2017
  • Federal Highway Administration (FHWA). FHWA Highway Noise Barrier Design Handbook. Washington, DC: US Department of Transportation; 2000
  • Conference of European Directors of Roads (CEDR). Identifying the key characteristics for environmental noise barrier condition measurements. In: Practical Road Equipment Measurement, Understanding and Management (PREMiUM). Brussels, Belgium: CEDR; 2016
  • Jean P. The effect of structural elasticity on the efficiency of noise barriers. Journal of Sound and Vibration. 2000;237:1-21. DOI: 10.1006/jsvi.2000.3059
  • Wang HB, Cai M, Zhong SQ , Li F. Sound field study of a building near a roadway via the boundary element method. Journal of Low Frequency Noise, Vibration and Active Control. 2018;37:519-533. DOI: 10.1177/1461348417725955
  • He ZC, Li GY, Liu GR, Cheng AG, Li E. Numerical investigation of ES-FEM with various mass redistribution for acoustic problems. Applied Acoustics. 2015;89:222-233. DOI: 10.1016/j.apacoust.2014.09.017
  • Papadakis NM, Stavroulakis GE. Finite element method for the estimation of insertion loss of noise barriers: comparison with various formulae (2D). Urban Science. 2020;4:77. DOI: 10.3390/urbansci4040077
  • Hiraishi M, Tsutahara M, Leung RCK. Numerical simulation of sound generation in a mixing layer by the finite difference lattice Boltzmann method. Computers & Mathematics with Applications. 2010;59:2403-2410. DOI: 10.1016/j.camwa.2009.08.073
  • Nilsson ME, Kaczmarek T, Berglund B. Perceived soundscape evaluation of noise mitigation methods. In: Inter-Noise 2004 Proceedings: 2683-2688. Prague; 2004
  • Nilsson ME, Andéhn M, Leśna P. Evaluating roadside noise barriers using an annoyance-reduction criterion. Journal of the Acoustical Society of America. 2008;124:3561-3567. DOI: 10.1121/1.2997433
  • Hong JY, Jang HS, Jeon JY. Evaluation of noise barriers for soundscape perception through laboratory experiments. Acoustics-2012. 23-27 April; Nantes, France; 2012
  • Schröder D, Svensson UP, Vorländer M. Open measurements of edge diffraction from a noise barrier scale model. Proceedings of the International Symposium on Room Acoustics, ISRA 2010. 29-31 August; Melbourne, Australia; 2010.
  • Li Q , Duhamel D, Luo Y, Yin H. Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach. Applied Acoustics. 2020;158:107079. DOI: 10.1016/j.apacoust.2019.107079
  • Association Française de Normalisation (NFS) 31089. Code d’essai pour la determination de caracteristiques acoustiques d´ecrans installes en champ libre. La Plaine Saint-Denis, France: AFNOR; 1990
  • Adrienne Research Team. Test methods for the acoustic performance of road traffic noise reducing devices—Final report. In: European Commission-DGXII-SMT Project MAT1-CT94049. Brussels, Belgium: European Commission; 1998
  • Clairbois J-P, de Roo F, Garai M, Conter M, Defrance J, Oltean Dumbrava C, et al. Guidebook to Noise Reducing Devices Optimisation. European Project QUIESST (FP7-SST-2008-RTD-1 SCP8-GA2009-233730). Brussels, Belgium: European Commission; 2012
  • European Committee for Standardization (EN). EN 1793-4:2015. Road traffic noise reducing devices—Test method for determining the acoustic performance—Part 4: Intrinsic characteristics. In: In Situ Values of Sound Diffraction. Brussels, Belgium: European Committee for Standardization; 2015
  • European Committee for Standardization (EN). EN 1793-5:2016. Road traffic noise reducing devices—Test method for determining the acoustic performance—Part 5: Intrinsic characteristics. In: In Situ Values of Sound Reflection under Direct Sound Field Conditions. Brussels, Belgium: European Committee for Standardization; 2016
  • European Committee for Standardization (EN). EN 1793-6:2018+A1:2021. Road traffic noise reducing devices: Test method for determining the acoustic performance—Part 6: Intrinsic characteristics—In situ values of airborne sound insulation under direct sound field conditions. Brussels, Belgium: European Committee for Standardization; 2021
  • Morcillo MA, Bragado B, Hidalgo A, Cordero R. Proyecto Europeo QUIESST: Diseño y utilización óptima de pantallas acústicas. TecniAcústica 2013. Valladolid, España. 2013. ISBN: 978-84-87985-23-2
  • Kim C, Cang T, Park Y, Kang M. Test Method for Determining the Acoustic Performance of Noise Reducing Devices Installed on the Top of Highway Noise Barriers. Korea: Korea Expressway Corporation; 2010
  • International Organization for Standardization (ISO). Acoustics: In Situ Determination of Insertion Loss of Outdoor Noise Barriers of All Types. ISO 10847:1997. Geneva, Switzerland: International Organization for Standardization; 1997
  • American National Standards Institute (ANSI). Methods for determination of insertion loss of outdoor noise barriers. In: ANSI/ASA S12.8-1998 (R2013). Melville, New York: American National Standards Institute/Acoustical Society of America; 2013
  • Federal Highway Administration (FHWA). Noise Measurement Handbook. Final Report. Washington, DC: US Department of Transportation; 2018
  • Anfosso-Lédée F, Steimer V, Demizieux P. In situ methods for the characterisation of noise barriers efficiency. Inter-Noise 2000. 27-30 August; Nice, France; 2000
  • Parnell J, Samuels S, Tsitsos C. The performance of noise barriers in attenuating road traffic noise. Euronoise 2009. Edinburg, Scotland; 2009
  • Martinez-Orozco JM, Barba A. Determination of Insertion Loss of noise barriers in Spanish roads. Applied Acoustics. 2022;186:108435. DOI: 10.1016/j.apacoust.2021. 108435
  • Pultznerová A, Šimo J, Grenčík J. Possibilities of evaluating the effectiveness of noise barriers in Slovakia. Applied Sciences. 2021;11:10206. DOI: 10.3390/app112110206
  • Wayson R, MacDonald J, Lindeman W, Berrios M, El-Assar A. Florida Noise Barrier Evaluation and Computer Model Validation. Orlando, Florida: University of Central Florida; 2003
  • Liu P, Chen S, Wu C. Evaluation on effects of noise barrier defects on their noise reduction efficiencies. Joint International Conference on Computing and Decision Making in Civil and Building Engineering. June 14-16; Montréal, Canada; 2006
  • Bragança L, Freitas E, Pinheiro D. Eficacia de barreiras acústicas. TecniAcustica. Gandia, Spain; 2006
  • Li Q , Duhamel D, Luo Y, Yin H. Improved methods for in-situ measurement railway noise barrier Insertion Loss. Transactions of Nanjing University of Aeronautics and Astronautics. 2018;35:58-68. DOI: 10.16356/j.1005-1120.2018.01.058
  • European Committee for Standardization (CEN). Railway applications. Track. Noise barriers and related devices acting on airborne sound propagation. Test method for determining the acoustic performance. Part 7: Extrinsic characteristics. In situ values of insertion loss. CEN/TS 16272-7:2015. Brussels: European Committee for Standardization; 2015
  • Bowlby W, Williamson R, Reiter D, Patton C, Pratt G, Kaliski K, et al. Field evaluation of reflected noise from a single noise barrier. In: Research Report 886. NCHRP, TRB. Washington, D.C.: National Academies of Sciences, Engineering and Medicine; 2018. DOI: 10.17226/25297
  • Palma MJC, Samagaio A. Acoustic performance of a noise barrier coated with an absorptive material. Noise Control Engineering Journal. 2006;54:245-250. DOI: 10.3397/1.2219895
  • Bastian-Monarca NA, Álvarez JP, Reyes CH. Cálculo de pérdida de inserción de barreras acústicas en la Ruta 5 Norte/Sur, tramo concesionado, a partir de mediciones del nivel de presión sonora. INGEACUS 2020 Conference. Valdivia, Chile. 2020
  • Barba A. Análisis de la eficacia de las pantallas acústicas: Evaluación in situ del comportamiento de las barreras anti-ruido en carreteras. In: Tesis Doctoral. Madrid: Universidad Europea de Madrid; 2017
  • Cho DS, Kim JH, Choi TM, Kim BH, Manvell D. Highway traffic noise prediction using method fully compliant with ISO 9613: comparison with measurements. Applied Acoustics. 2004;65:883-892. DOI: 10.1016/j.apacoust.2004.03.004
  • Jagniatinskis A, Fiks B, Mickaitis M. Determination of insertion loss of acoustic barriers under specific conditions. Procedia Engineering. 2017;187:289-294. DOI: 10.1016/j.proeng.2017.04.377
  • Watts G. A comparison of noise measures for assessing vehicle noisiness. Journal of Sound and Vibation. 1995;180:493-512