Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases

  1. Linde, Dolores
  2. Ayuso Fernández, Iván
  3. Laloux, Marcos
  4. Aguiar Cervera, José Enrique
  5. De Lacey, Antonio L.
  6. Ruiz-Dueñas, Francisco J.
  7. Martínez, Ángel T.
  1. 1 Centro de Investigaciones Biológicas
    info

    Centro de Investigaciones Biológicas

    Madrid, España

    ROR https://ror.org/04advdf21

  2. 2 Instituto de Catálisis y Petroleoquímica
    info

    Instituto de Catálisis y Petroleoquímica

    Madrid, España

    ROR https://ror.org/004swtw80

  3. 3 Norwegian University of Life Sciences
    info

    Norwegian University of Life Sciences

    Ås, Noruega

    ROR https://ror.org/04a1mvv97

Revista:
International Journal of Molecular Sciences

ISSN: 1422-0067

Año de publicación: 2021

Volumen: 22

Número: 5

Páginas: 2629

Tipo: Artículo

DOI: 10.3390/IJMS22052629 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Molecular Sciences

Resumen

We aim to clarify the ligninolytic capabilities of dye-decolorizing peroxidases (DyPs) from bacteria and fungi, compared to fungal lignin peroxidase (LiP) and versatile peroxidase (VP). With this purpose, DyPs from Amycolatopsis sp., Thermomonospora curvata, and Auricularia auricula-judae, VP from Pleurotus eryngii, and LiP from Phanerochaete chrysosporium were produced, and their kinetic constants and reduction potentials determined. Sharp differences were found in the oxidation of nonphenolic simple (veratryl alcohol, VA) and dimeric (veratrylglycerol-β- guaiacyl ether, VGE) lignin model compounds, with LiP showing the highest catalytic efficiencies (around 15 and 200 s−1·mM−1 for VGE and VA, respectively), while the efficiency of the A. auricula-judae DyP was 1–3 orders of magnitude lower, and no activity was detected with the bacterial DyPs. VP and LiP also showed the highest reduction potential (1.28–1.33 V) in the rate-limiting step of the catalytic cycle (i.e., compound-II reduction to resting enzyme), estimated by stopped-flow measurements at the equilibrium, while the T. curvata DyP showed the lowest value (1.23 V). We conclude that, when using realistic enzyme doses, only fungal LiP and VP, and in much lower extent fungal DyP, oxidize nonphenolic aromatics and, therefore, have the capability to act on the main moiety of the native lignin macromolecule.

Información de financiación

This work has been funded by the H2020 BBI-JU (https://www.bbi-europe.eu, accessed on 4 March 2021) EnzOx2 (H2020-BBI-PPP-2015-2-720297; https://www.enzox2.eu, accessed on 4 March 2021) project, the GENOBIOREF (BIO2017-86559-R) project of the Spanish Ministry of Science & Innovation (co-financed by FEDER funds), and the CSIC project PIE-201620E081.

Referencias bibliográficas

  • 10.1016/j.copbio.2019.02.018
  • 10.1016/j.copbio.2009.05.002
  • 10.1016/j.indcrop.2019.111526
  • Beckham, (2018)
  • 10.1007/s10295-007-0293-6
  • 10.1126/science.1137016
  • Martínez, (2018), pp. 199
  • 10.1016/j.abb.2014.12.025
  • 10.1016/0022-2836(92)90992-S
  • 10.1128/AEM.00058-10
  • 10.1128/AEM.00375-06
  • 10.1007/s00018-004-5076-x
  • 10.1128/AEM.45.3.898-904.1983
  • 10.1007/s00253-019-10318-y
  • 10.1016/j.copbio.2010.10.009
  • 10.1186/s13068-019-1376-0
  • 10.1016/j.cbpa.2013.11.015
  • 10.1016/j.jbiotec.2016.08.011
  • 10.1007/s10295-018-2064-y
  • 10.1021/acschembio.8b00557
  • Chandra, (2017), pp. 115
  • 10.1016/j.ijbiomac.2019.06.221
  • 10.1007/s00253-012-4521-2
  • 10.1016/j.pep.2014.08.007
  • 10.1016/j.abb.2015.01.018
  • 10.1038/srep08245
  • 10.1128/AEM.01121-09
  • 10.1093/molbev/msaa301
  • 10.1126/science.1221748
  • 10.1016/j.abb.2015.01.022
  • 10.1042/BJ20141211
  • 10.1021/acs.jpcb.7b00835
  • 10.1515/psr-2016-0051
  • 10.1016/j.jmb.2011.02.047
  • 10.1016/S1359-0278(97)00059-X
  • 10.1021/cb300383y
  • 10.1074/jbc.M115.658807
  • 10.1007/s00253-009-2173-7
  • 10.1093/jxb/ern261
  • 10.1016/S0141-0229(02)00008-X
  • 10.1042/bj3150015
  • 10.1007/s00253-009-2369-x
  • 10.3390/molecules24071208
  • 10.1016/j.jmb.2005.09.047
  • 10.1074/jbc.M112.405548
  • 10.1186/s13068-017-0744-x
  • 10.1021/acscatal.8b02306
  • 10.1007/s00253-015-6665-3
  • 10.1021/bi200427h
  • 10.1016/j.abb.2015.03.009
  • 10.1016/j.abb.2014.12.022
  • 10.1016/j.abb.2016.02.019
  • 10.1016/j.tet.2015.12.078
  • 10.1021/acscatal.6b03331
  • 10.1021/bi101892z
  • 10.1021/bi301630a
  • 10.1021/bi00447a032
  • 10.1016/j.bbrc.2007.04.020
  • 10.1002/chem.201805679
  • 10.1016/j.abb.2010.03.002
  • 10.1016/j.jinorgbio.2005.02.021
  • 10.1016/j.molcatb.2013.09.025
  • 10.1002/bbb.1500
  • 10.1073/pnas.1802555115
  • 10.1021/bi981633h
  • 10.1074/jbc.M010739200
  • 10.1186/s13068-016-0615-x
  • 10.1074/jbc.M115.665919
  • 10.1007/s10529-011-0571-2
  • 10.1042/BJ20130251
  • 10.1016/j.abb.2014.12.016
  • 10.1021/acscatal.6b01952
  • 10.1021/acscatal.7b01861
  • 10.1016/j.bbrc.2017.01.081
  • 10.1016/j.jinorgbio.2019.110761
  • 10.1016/j.enzmictec.2019.01.002
  • 10.1111/1462-2920.14593
  • 10.1007/s00253-013-5041-4
  • 10.1039/c2sm26310f
  • 10.1021/acs.biochem.5b00952
  • 10.1016/j.jbiosc.2016.12.001
  • 10.1128/AEM.00699-13
  • 10.1074/jbc.M112.356378
  • 10.1073/pnas.1905040116
  • 10.1016/j.pep.2005.01.016
  • 10.1038/227680a0
  • 10.1016/0003-2697(87)90643-9
  • 10.1111/j.1432-1033.1990.tb15338.x