Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions

  1. Pérez-Piñeiro, Javier 1
  2. Sánchez-Cea, Fernando 1
  3. Arce, Mariana P. 1
  4. Lado-Touriño, Isabel 1
  5. Rojas-Cervantes, María Luisa 2
  6. Gilsanz, María Fuencisla 1
  7. Gallach-Pérez, Darío 1
  8. Blasco, Rodrigo 1
  9. Barrios-Bermúdez, Niurka 1
  10. Cerpa-Naranjo, Arisbel 1
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

Revista:
Journal of Xenobiotics

ISSN: 2039-4713

Año de publicación: 2023

Volumen: 13

Número: 1

Páginas: 90-101

Tipo: Artículo

DOI: 10.3390/JOX13010008 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Xenobiotics

Resumen

In this work, a stability study of dispersions of graphene oxide and graphene oxide functionalized with polyethylene glycol (PEG) in the presence of bovine serum albumin is carried out. First, a structural characterization of these nanomaterials is performed by scanning electron microscopy, atomic force microscopy, and ultraviolet visible spectroscopy, comparing the starting nanomaterials with the nanomaterials in contact with the biological material, i.e., bovine fetal serum. The different experiments were performed at different concentrations of nanomaterial (0.125–0.5 mg/mL) and BSA (0.01–0.04 mg/mL), at different incubation times (5–360 min), with and without PEG, and at different temperatures (25–40 °C). The SEM results show that BSA is adsorbed on the surface of the graphene oxide nanomaterial. Using UV-Vis spectrophotometry, the characteristic absorption peaks of BSA are observed at 210 and 280 nm, corroborating that the protein has been adsorbed. When the time increases, the BSA protein can be detached from the nanomaterial due to a desorption process. The stability of the dispersions is reached at a pH between 7 and 9. The dispersions behave like a Newtonian fluid with viscosity values between 1.1 and 1.5 mPa·s at a temperature range of 25 to 40 °C. The viscosity values decrease as the temperature increases.

Información de financiación

The authors would like to thank the Journal of Xenobiotics for covering publication costs.

Financiadores

  • Universidad Europea de Madrid
    • 2019/UEM15

Referencias bibliográficas

  • Dreyer, (2010), Chem. Soc. Rev., 39, pp. 228, 10.1039/B917103G
  • Goenka, (2014), J. Control. Release, 173, pp. 75, 10.1016/j.jconrel.2013.10.017
  • Zhao, (2017), Polymer, 133, pp. 272, 10.1016/j.polymer.2017.10.035
  • Gong, (2016), Chem. Mater., 28, pp. 8082, 10.1021/acs.chemmater.6b01447
  • Kango, (2013), Prog. Polym. Sci., 38, pp. 1232, 10.1016/j.progpolymsci.2013.02.003
  • Elkhenany, (2017), Nanomed. Nanotechnol. Biol. Med., 13, pp. 2117, 10.1016/j.nano.2017.05.009
  • Viswanathan, (2015), Mater. Today, 18, pp. 513, 10.1016/j.mattod.2015.04.003
  • Bollella, (2017), Biosens. Bioelectron., 89, pp. 152, 10.1016/j.bios.2016.03.068
  • McShan, (2018), Nano-Micro Lett., 10, pp. 1
  • Cheong, Y.K., Arce, M.P., Benito, A., Chen, D., Crisóstomo, N.L., Kerai, L.V., Rodríguez, G., Valverde, J.L., Vadalia, M., and Cerpa-Naranjo, A. (2020). Synergistic antifungal study of pegylated graphene oxides and copper nanoparticles against candida albicans. Nanomaterials, 10.
  • Ma, (2021), J. Drug Target., 29, pp. 884, 10.1080/1061186X.2021.1887200
  • Sun, (2018), Nano Res., 1, pp. 203, 10.1007/s12274-008-8021-8
  • Valenti, (2007), J. Colloid Interface Sci., 307, pp. 349, 10.1016/j.jcis.2006.11.046
  • Zhu, (2014), J. Nanopartic. Res., 16, pp. 1, 10.1007/s11051-014-2530-z
  • Hadjidemetriou, (2016), Nanoscale, 8, pp. 6948, 10.1039/C5NR09158F
  • Corbo, (2016), Nanomedicine, 11, pp. 81, 10.2217/nnm.15.188
  • Kharazian, (2016), Int. J. Biochem. Cell Biol., 75, pp. 162, 10.1016/j.biocel.2016.02.008
  • Lundqvist, (2008), Proc. Natl. Acad. Sci. USA, 105, pp. 14265, 10.1073/pnas.0805135105
  • (1981), Pharmacol. Rev., 33, pp. 17
  • Cerpa, A., Pérez-Piñeiro, J., Navajas-Chocarro, P., Arce, M., Lado-Touriño, I., Barrios-Bermudez, N., Moreno, R., and Rojas-Cervantes, M.L. (2022). Rheological properties of different Graphene nanomaterials in biological media. Materials, 15.
  • Sapsford, (2011), Anal. Chem., 83, pp. 4453, 10.1021/ac200853a
  • (2015), Appl. Surf. Sci., 353, pp. 1095, 10.1016/j.apsusc.2015.06.198
  • Yang, K., Huang, L.J., Wang, Y.X., Du, Y.C., Zhang, Z.J., Wang, Y., Kipper, M.J., Belfiore, L.A., and Tang, J.G. (2020). Graphene oxide nanofiltration membranes containing silver nanoparticles: Tuning separation efficiency via nanoparticle size. Nanomaterials, 10.
  • Zhang, (2018), Appl. Surf. Sci., 427, pp. 1019
  • Ravindran, (2010), Colloids Surf. B, 76, pp. 32, 10.1016/j.colsurfb.2009.10.005
  • Xu, (2013), Int. J. Mol. Sci., 14, pp. 14185, 10.3390/ijms140714185
  • Carnicer, (2021), Open Ceram., 5, pp. 100052, 10.1016/j.oceram.2020.100052