Influence of Torque and Cadence on Power Output Production in Cyclists

  1. Leo, Peter 8
  2. Mateo-March, Manuel 111
  3. Valenzuela, Pedro L. 210
  4. Muriel, Xabier 12
  5. Gandía-Soriano, Alexis 3
  6. Giorgi, Andrea 45
  7. Zabala, Mikel 9
  8. Barranco-Gil, David 1
  9. Mujika, Iñigo 67
  10. Pallarés, Jesús G. 10
  11. Lucia, Alejandro 12
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Instituto de Investigación Sanitaria Hospital 12 de Octubre
    info

    Instituto de Investigación Sanitaria Hospital 12 de Octubre

    Madrid, España

  3. 3 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  4. 4 Medical and Performance Staff, Drone Hopper-Androni Giocattoli Professional Cycling Team, Turín, Italy
  5. 5 Complex Operational Unit for Functional Recovery and Reeducation, Azienda USL Toscana Sud-Est, Arezzo, Italy
  6. 6 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  7. 7 Universidad Finis Terrae
    info

    Universidad Finis Terrae

    Santiago de Chile, Chile

    ROR https://ror.org/0225snd59

  8. 8 University of Innsbruck
    info

    University of Innsbruck

    Innsbruck, Austria

    ROR https://ror.org/054pv6659

  9. 9 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  10. 10 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  11. 11 Universidad Miguel Hernández de Elche
    info

    Universidad Miguel Hernández de Elche

    Elche, España

    ROR https://ror.org/01azzms13

  12. 12 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
International Journal of Sports Physiology and Performance

ISSN: 1555-0265 1555-0273

Año de publicación: 2022

Páginas: 1-10

Tipo: Artículo

DOI: 10.1123/IJSPP.2022-0233 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Sports Physiology and Performance

Resumen

Purpose: No information is available on the torque/cadence relationship in road cyclists. We aimed to establish whether this relationship differs between cyclists of different performance levels or team roles. Methods: Mean maximal power (MMP) output data from 177 riders were obtained from 2012 to 2021 from training and competitions. Cyclists were categorized according to their performance level (world-tour [WT, n = 68], procontinental [PC, n = 63], or under 23 [U23, n = 46]) and team role (time trialists [n = 12], all-rounders [n = 94], climbers [n = 64], or team leaders [n = 7]). Results: A significant interaction effect was found for absolute and relative MMP (P < .001), with higher values in PC than WT for short (5–60 s) efforts and the opposite trend for longer durations. MMP was also greater in PC than in U23 for short efforts (30–60 s), with WT and PC attaining higher MMP than U23 for longer bouts (5–60 min). A significant interaction effect was found for cadence (P = .007, but with no post hoc differences) and absolute (P = .010) and relative torque (P = .002), with PC and WT showing significantly higher torque (all P < .05) than U23 for 5- to 60-minute efforts, yet with no differences between the former 2 performance levels. No interaction effect between team roles was found for cadence (P = .185) or relative torque (P = .559), but a significant interaction effect was found for absolute torque (P < .001), with all-rounders attaining significantly higher values than climbers for 5-second to 5-minute efforts. Conclusions: Differences in MMP between cycling performance levels and rider types are dependent on torque rather than cadence, which might support the role of torque development in performance.

Referencias bibliográficas

  • Muriel X, Valenzuela PL, Mateo-March M, Pallarés JG, Lucia A, Barranco-Gil D. Physical demands and performance indicators in male professional cyclists during a grand tour: worldtour versus proteam category. Int J Sport Physiol Perform. 2021;17(1):22–30. doi:10.1123/ijspp.2021-0082
  • Leo P, Spragg J, Simon D, Mujika I, Lawley SJ. Power profiling, workload characteristics and race performance of U23 and professional cyclists during the multistage race tour of the Alps. Int J Sport Physiol Perform. 2021;16(8):1–7. doi:10.1123/ijspp.2020-0381
  • Sanders D, Heijboer M. Physical demands and power profile of different stage types within a cycling grand tour. Eur J Sport Sci. 2019;19(6):736–744. PubMed ID: 30589390 doi:10.1080/17461391.2018.1554706
  • Valenzuela P, Muriel X, van Erp T, et al. The record power profile of male professional cyclists: normative values obtained from a large database. Int J Sport Physiol Perform. 2022;17(5):701–710. doi:10.1123/ijspp.2021-0263
  • van Erp T, Sanders D, Lamberts RP. Maintaining power output with accumulating levels of work done is a key determinant for success in professional cycling. Med Sci Sport Exerc. 2021;53(9):1903–1910. doi:10.1249/MSS.0000000000002656
  • Bertucci W, Grappe F, Girard A, Betik A, Rouillon JD. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J Biomech. 2005;38(5):1003–1010. doi:10.1016/j.jbiomech.2004.05.037
  • Vandewalle H, Peres G, Heller J, Monod H. All out anaerobic capacity tests on cycle ergometers. Eur J Appl Physiol. 1985;54(2):222–229. doi:10.1007/BF02335934
  • Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol. 1981;51(5):1175–1182. PubMed ID: 7298457 doi:10.1152/jappl.1981.51.5.1175
  • Martin J, Wagner B, Coyle E. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sport Exerc. 1997;29(11):1505–1512. doi:10.1097/00005768-199711000-00018
  • Gardner AS, Martin JC, Martin DT, Barras M, Jenkins DG. Maximal torque-and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol. 2007;101(3):287–292. PubMed ID: 17562069 doi:10.1007/s00421-007-0498-4
  • Taylor K, Deckert S, Sanders D. Field-testing to determine power-cadence and torque-cadence profiles in professional road cyclists: sprint profiling of professional cyclists. Eur J Sport Sci. 2022;1:1–9. doi:10.1080/17461391.2022.2095307
  • Muriel X, Mateo-March M, Valenzuela PL, et al. Durability and repeatability of professional cyclists during a grand tour. Eur J Sport Sci. 2021;1:1–8. doi:10.1080/17461391.2021.1987528
  • Mateo-March M, Valenzuela P, Muriel X, et al. The record power profile of male professional cyclists: fatigue matters. Int J Sport Physiol Perform. 2022;1:1–6. doi:10.1123/ijspp.2021-0403
  • Spragg J, Leo P, Swart J. The relationship between training characteristics and durability in professional cyclists across a competitive season. Eur J Sport Sci. 2022;1:1–10. doi:10.1080/17461391.2022.2049886
  • Maunder E, Seiler S, Mildenhall MJ, Kilding AE, Plews DJ. The importance of “durability” in the physiological profiling of endurance athletes. Sports Med. 2021;51(8):1619–1628. doi:10.1007/s40279-021-01459-0
  • Wackwitz TA, Minahan CL, King T, Du Plessis C, Andrews MH, Bellinger PM. Quantification of maximal power output in well-trained cyclists. J Sports Sci. 2020;39(1):81–90. doi:10.1080/02640414.2020.1805251
  • Vogt S, Roecker K, Schumacher YO, et al. Cadence-power-relationship during decisive mountain ascents at the Tour de France. Int J Sport Med. 2008;29(3):244–250. doi:10.1055/s-2007-965353
  • Bouillod A, Soto-Romero G, Grappe F, Bertucci W, Brunet E, Cassirame J. Caveats and recommendations to assess the validity and reliability of cycling power meters: a systematic scoping review. Sensors. 2022;22(1):386. doi:10.3390/s22010386
  • Maier T, Schmid L, Müller B, Steiner T, Wehrlin JP. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int J Sport Med. 2017;38(6):454–461. doi:10.1055/s-0043-102945
  • Gallo G, Leo P, Mateo-March M, et al. Cross-sectional differences in race demands between junior, under 23, and professional road cyclists. Int J Sport Perform Anal. 2022;17(3):450–457. doi:10.1123/ijspp.2021-0256
  • Sanders D, van Erp T. The physical demands and power profile of professional men’s cycling races: an updated review. Int J Sport Physiol Perform. 2021;16(1):3–12. doi:10.1123/ijspp.2020-0508
  • Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sport Med. 2011;32(11):839–844. doi:10.1055/s-0031-1279773
  • Pinot J, Grappe F. A six-year monitoring case study of a top-10 cycling grand tour finisher. J Sport Sci. 2015;33(9):907–914. doi:10.1080/02640414.2014.969296
  • Vogt S, Schumacher YO, Blum A, et al. Cycling power output produced during flat and mountain stages in the Giro d’Italia: a case study. J Sport Sci. 2007;25(12):1299–1305. doi:10.1080/02640410601001632
  • Vogt S, Schumacher YO, Roecker K, et al. Power output during the Tour de France. Int J Sport Med. 2007;28(9):756–761. doi:10.1055/s-2007-964982
  • Dorel S, Hautier C, Rambaud O, et al. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sport Med. 2005;26(9):739–746. doi:10.1055/s-2004-830493
  • Hendrix C, Housh T, Mielke M, et al. Critical torque, estimated time to exhaustion, and anaerobic work capacity from linear and nonlinear mathematical models. Med Sci Sport Exerc. 2009;41(12):2185–2190. doi:10.1249/MSS.0b013e3181ab8cc0
  • Pethick J, Winter SL, Burnley M. Physiological evidence that the critical torque is a phase transition, not a threshold. Med Sci Sport Exerc. 2020;52(11):2390–2401. doi:10.1249/MSS.0000000000002389
  • Brownstein C, Metra M, Pastor F, Faricier R, Millet G. Disparate mechanisms of fatigability in response to prolonged running versus cycling of matched intensity and duration. Med Sci Sport Exerc. 2022;54(5):872–882. doi:10.1249/MSS.0000000000002863
  • Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol. 2008;294(2):585–593. doi:10.1152/ajpregu.00731.2007
  • Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergon. 1988;31(9):1265–1279. doi:10.1080/00140138808966766
  • Kordi M, Folland J, Goodall S, et al. Cycling‐specific isometric resistance training improves peak power output in elite sprint cyclists. Scand J Med Sci Sport. 2020;30(9):1594–1604. doi:10.1111/sms.13742
  • Rønnestad B, Hansen J, Hollan I, Ellefsen S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand J Med Sci Sport. 2015;25(1):e89–e98. doi:10.1111/sms.12257
  • Kordi M, Evans M, Howatson G. Quasi-isometric cycling: a case study investigation of a novel method to augment peak power output in sprint cycling. Int J Sport Perform Anal. 2020;16(3):452–455. doi:10.1123/ijspp.2020-0100
  • Hansen E, Jørgensen L, Jensen K, Fregly B., Sjøgaard G. Crank inertial load affects freely chosen pedal rate during cycling. J Biomech. 2002;35(2):277–285. PubMed ID: 11784546 doi:10.1016/S0021-9290(01)00182-8
  • Barratt P, Martin J, Elmer S, Korff T. Effects of pedal speed and crank length on pedaling mechanics during submaximal cycling. Med Sci Sport Exerc. 2016;48(4):705. doi:10.1249/MSS.0000000000000817