Field-Derived Maximal Power Output in Cycling: An Accurate Indicator of Maximal Performance Capacity?

  1. Jesús G. Pallares 1
  2. Alejandro Hernández-Belmonte 1
  3. Pedro L. Valenzuela 2
  4. Xabier Muriel 1
  5. Manuel Mateo-March 34
  6. David Barranco-Gil 4
  7. Alejandro Lucia 24
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  2. 2 Hospital Universitario 12 de Octubre
    info

    Hospital Universitario 12 de Octubre

    Madrid, España

    ROR https://ror.org/00qyh5r35

  3. 3 Universidad Miguel Hernández de Elche
    info

    Universidad Miguel Hernández de Elche

    Elche, España

    ROR https://ror.org/01azzms13

  4. 4 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

Revista:
International journal of sports physiology and performance

ISSN: 1555-0273

Año de publicación: 2022

Tipo: Artículo

DOI: 10.1123/IJSPP.2022-0208 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International journal of sports physiology and performance

Resumen

Purpose: To determine the validity of field-derived mean maximum power (MMP) values for monitoring maximal cycling endurance performance.Methods: Twenty-seven male professional cyclists performed 3 timed trials (TTs) of 1-, 5-, and 20-minute duration that were used as the gold standard reference. Field-based power output data (3336 files; 124 [25] per cyclist) were registered during the preparatory (60 d pre-TT, including training data only) and specific period of the season (60 d post-TT, including both training and competitions). Comparisons were made between TT performance (mean power output) and MMP values obtained for efforts of the same duration as TT (MMP of 1-, 5-, and 20-min duration). The authors also compared TT- and MMP-derived values of critical power (CP) and anaerobic work capacity.Results: A large correlation (P < .001, r > .65) was found between MMP and TT performance regardless of the effort duration or season period. However, considerable differences (P < .05, standard error of measurement [SEM] > 5%) were found between MMP and TT values for all effort durations in the preparatory period, as well as for the derived CP and anaerobic work capacity. Significant differences were also found between MMP and TT of 1 minute in the specific period, as well as for anaerobic work capacity, yet with no differences for MMP of 5- and 20-minute duration or the derived CP (P > .05, SEM < 5%).Conclusion: MMP values (for efforts ≥5 min) and the associated CP obtained from both training sessions and competitions can be considered overall accurate indicators of the cyclist's maximal capabilities, but specific tests might be necessary for shorter efforts or when considering training sessions only.

Referencias bibliográficas

  • 1.Passfield L, Hopker JG, Jobson S, Friel D, Zabala M. Knowledge is power: issues of measuring training and performance in cycling. J Sports Sci. 2017;35(14):1426–1434. PubMed ID: 27686573 doi:10.1080/02640414.2016.1215504
  • 2.Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sports Med. 2011;32(11):839–844. PubMed ID: 22052032 doi:10.1055/s-0031-1279773
  • 3.Valenzuela PL, Muriel X, Van Erp T, et al. The record power profile of male professional cyclists: normative values obtained from a large database. Int J Sport Physiol Perform. 2022;17(5):701–710. doi:10.1123/ijspp.2021-0263
  • 4.Karsten B, Jobson SA, Hopker J, Stevens L, Beedie C. Validity and reliability of critical power field testing. Eur J Appl Physiol. 2015;115(1):197–204. PubMed ID: 25260244 doi:10.1007/s00421-014-3001-z
  • 5.Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. AJP Regul Integr Comp Physiol. 2008;294(2):R585–R593. doi:10.1152/ajpregu.00731.2007
  • 6.Chorley A, Lamb KL. The application of critical power, the work capacity above critical power (W´), and its reconstitution: a narrative review of current evidence and implications for cycling training prescription. Sports. 2020;8(9):123–24. doi:10.3390/sports8090123
  • 7.Quod MJ, Martin DT, Martin JC, Laursen PB. The power profile predicts road cycling MMP. Int J Sports Med. 2010;31(6):397–401. PubMed ID: 20301046 doi:10.1055/s-0030-1247528
  • 8.Leo P, Spragg J, Mujika I, Menz V, Lawley JS. Power profiling in U23 professional cyclists during a competitive season. Int J Sports Physiol Perform. 2021;16(6):881–889. PubMed ID: 33607626 doi:10.1123/ijspp.2020-0200
  • 9.Mateo-March M, Valenzuela PL, Muriel X, et al. The record power profile of male professional cyclists: fatigue matters. Int J Sports Physiol Perform. 2022;17(6):926–931. doi:10.1123/ijspp.2021-0403
  • 10.Valenzuela PL, Mateo-March M, Zabala M, et al. Ambient temperature and field-based cycling performance: insights from male and female professional cyclists. Int J Sports Physiol Perform. 2022;1:1–5. doi:10.1123/ijspp.2021-0508
  • 11.Mateo-March M, Muriel X, Valenzuela PL, et al. Altitude and endurance performance in altitude natives versus lowlanders. Med Sci Sport Exerc. 2022;54(7):1218–1224. doi:10.1249/MSS.0000000000002890
  • 12.van Erp T, Lamberts RP, Sanders D. Power profile of top 5 results in world tour cycling races. Int J Sports Physiol Perform. 2021;17(2):203–209. doi:10.1123/ijspp.2021-0081
  • 13.Leo P, Spragg J, Simon D, Lawley JS, Mujika I. Training characteristics and power profile of professional U23 cyclists throughout a competitive season. Sports. 2020;8(12):167. doi:10.3390/sports8120167
  • 14.Valenzuela PL, Alejo LB, Montalvo-Pérez A, et al. Relationship between critical power and different lactate threshold markers in recreational cyclists. Front Physiol. 2021;12:828. doi:10.3389/fphys.2021.676484
  • 15.Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. Int J Sport Physiol Perform. 2014;9(6):931–935. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01787161/full
  • 16.Karsten B, Petrigna L, Klose A, Bianco A, Townsend N, Triska C. Relationship between the critical power test and a 20-min functional threshold power test in cycling. Front Physiol. 2021;11(January):1–8. doi:10.3389/fphys.2020.613151
  • 17.Triska C, Tschan H, Tazreiter G, Nimmerichter A. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. 2015;36(13):1063–1068. PubMed ID: 26258826 doi:10.1055/s-0035-1549958
  • 18.Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM. Critical power: how different protocols and models affect its determination. J Sci Med Sport. 2018;21(7):742–747. doi:10.1016/j.jsams.2017.11.015
  • 19.Pallarés JG, Lillo-Bevia JR, Moran-Navarro R, Cerezuela-Espejo V, Mora-Rodriguez R. Time to exhaustion during cycling is not well predicted by critical power calculations. Appl Physiol Nutr Metab. 2020;45(7):753–760. PubMed ID: 31935109 doi:10.1139/apnm-2019-0637
  • 20.Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–238. doi:10.2165/00007256-199826040-00002
  • 21.Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(5):375–381. doi:10.2165/00007256-200030050-00006
  • 22.Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278
  • 23.Sanders D, van Erp T. The physical demands and power profile of professional men’s cycling races: an updated review. Int J Sports Physiol Perform. 2021;16(1):3–12. PubMed ID: 33271501 doi:10.1123/ijspp.2020-0508
  • 24.Leo P, Spragg J, Podlogar T, Lawley JS, Mujika I. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol. 2022;122(2):301–316. PubMed ID: 34708276 doi:10.1007/s00421-021-04833-y