The Comparison of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training after Coronary Artery Bypass Graft: A Systematic Review of Recent Studies

  1. Schulté, Billie 1
  2. Nieborak, Lisa 1
  3. Leclercq, Franck 1
  4. Villafañe, Jorge Hugo 2
  5. Sánchez Romero, Eleuterio A. 3344
  6. Corbellini, Camilo 1
  1. 1 Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, 50, Avenue du Parc des Sports, 4671 Differdange, Luxembourg
  2. 2 IRCCS Fondazione Don Carlo Gnocchi, Piazzale Morandi 6, 20148 Milan, Italy
  3. 3 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  4. 4 Universidad Europea de Canarias
    info

    Universidad Europea de Canarias

    Orotava, España

    ROR https://ror.org/051xcrt66

Revista:
Journal of Cardiovascular Development and Disease

ISSN: 2308-3425

Año de publicación: 2022

Volumen: 9

Número: 10

Páginas: 328

Tipo: Revisión

DOI: 10.3390/JCDD9100328 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Cardiovascular Development and Disease

Objetivos de desarrollo sostenible

Resumen

Currently, no international consensus on cardiac rehabilitation exists, leading to great variability in the intensity recommendations for training programs for cardiac patients, including those undergoing coronary artery bypass graft surgery (CABG). While some countries prefer the high-intensity interval training (HIIT) method to improve cardiorespiratory fitness, other countries opt for moderate-intensity continuous training (MICT). The aim of this systematic review was to compare the effects of HIIT and MICT on aerobic fitness and quality of life (QoL) in patients undergoing CABG with the intention of providing support for a consensus on exercise therapy. Methods: A systematic review of randomized controlled trials (RCTs) was conducted using the online publication databases PubMed, the Cochrane Library and the Bibliothèque nationale du Luxembourg (BnL) covering the last ten years to July 2022. Relevant identified studies respecting the inclusion/exclusion criteria were selected, screened and extracted by four reviewers. Furthermore, the methodological quality of the clinical trials was assessed using the PEDro scale, which was reinforced using the Cochrane Risk of Bias Tool for Randomized Trials (RoB2) for the evaluation of the risk of bias to provide more detail in the evaluation. The certainty of the evidence analysis was established using different levels of evidence in accordance with the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework. Results: A total of 379 patients from five RCTs diagnosed with coronary artery disease, including patients undergoing CABG, performed aerobic exercise over different time periods and were assessed based on peakVO2, VO2max and QoL. Overall, both training methods provided improvements in cardiorespiratory fitness and quality of life, with greater changes in HIIT groups. Conclusion: Both trainings methods provide improvements in cardiorespiratory fitness and QoL, with greater increases from HIIT. The moderate quality of evidence supports the use of HIIT and MICT to improve cardiorespiratory fitness and QoL.

Información de financiación

Financiadores

Referencias bibliográficas

  • 1. Grace, S.L.; Warburton, D.R.; Stone, J.A.; Sanderson, B.K.; Oldridge, N.; Jones, J.; Wong, N.; Buckley, J.P. International Charter on Cardiovascular Prevention and Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2013, 33, 128–131.
  • 2. Dalal, H.M.; Doherty, P.; Taylor, R.S. Cardiac rehabilitation. BMJ 2015, 351, h5000.
  • 3. Squiers, J.J.; Mack, M.J. Coronary artery bypass grafting-fifty years of quality initiatives since Favaloro. Ann. Cardiothorac. Surg. 2018, 7, 516–520.
  • 4. Bhatnagar, P.; Wickramasinghe, K.; Williams, J.; Rayner, M.; Townsend, N. The epidemiology of cardiovascular disease in the UK 2014. Heart 2015, 101, 1182–1189.
  • 5. Borzou, S.R.; Amiri, S.; Salavati, M.; Soltanian, A.R.; Safarpoor, G. Effects of the First Phase of Cardiac Rehabilitation Training on Self-Efficacy among Patients Undergoing Coronary Artery Bypass Graft Surgery. J. Tehran Univ. Heart Cent. 2018, 13, 126–131.
  • 6. Melly, L.; Torregrossa, G.; Lee, T.; Jansens, J.-L.; Puskas, J.D. Fifty years of coronary artery bypass grafting. J. Thorac. Dis. 2018, 10, 1960–1967.
  • 7. Gao, F.; Shan, L.; Wang, C.; Meng, X.; Chen, J.; Han, L.; Zhang, Y.; Li, Z. Predictive Ability of European Heart Surgery Risk Assessment System II (EuroSCORE II) and the Society of Thoracic Surgeons (STS) Score for in-Hospital and Medium-Term Mortality of Patients Undergoing Coronary Artery Bypass Grafting. Int. J. Gen. Med. 2021, 14, 8509–8519. [CrossRef]
  • 8. Moholdt, T.T.; Amundsen, B.H.; Rustad, L.A.; Wahba, A.; Løvø, K.T.; Gullikstad, L.R.; Bye, A.; Skogvoll, E.; Wisløff, U.; Slørdahl, S.A. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. Am. Heart J. 2009, 158, 1031–1037.
  • 9. Taylor, J.L.; Bonikowske, A.R.; Olson, T.P. Optimizing Outcomes in Cardiac Rehabilitation: The Importance of Exercise Intensity. Front. Cardiovasc. Med. 2021, 8, 1031–1037.
  • 10. Ross, L.M.; Porter, R.R.; Durstine, J.L. High-intensity interval training (HIIT) for patients with chronic diseases. J. Sport Health Sci. 2016, 5, 139–144.
  • 11. Williams, C.J.; Gurd, B.J.; Bonafiglia, J.T.; Voisin, S.; Li, Z.; Harvey, N.; Croci, I.; Taylor, J.L.; Gajanand, T.; Ramos, J.S.; et al. A Multi-Center Comparison of O2peak Trainability Between Interval Training and Moderate Intensity Continuous Training. Front. Physiol. 2019, 10, 19.
  • 12. Doyle, M.P.; Indraratna, P.; Tardo, D.; Peeceeyen, S.C.; Peoples, E.G. Safety and efficacy of aerobic exercise commenced early after cardiac surgery: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2018, 26, 36–45.
  • 13. Buttar, K.K.; Saboo, N.; Kicker, S. A review: Maximal oxygen uptake (VO2 max) and its estimation methods. Int. J. Phys. Educ. Sports Health 2019, 6, 24–32.
  • 14. Cade, W.T.; Bohnert, K.L.; Reeds, D.N.; Peterson, L.; Bittel, A.J.; Bashir, A.; Byrne, B.J.; Taylor, C.L. Peak oxygen uptake (VO2peak) across childhood, adolescence and young adulthood in Barth syndrome: Data from cross-sectional and longitudinal studies. PLoS ONE 2018, 13, e0197776.
  • 15. Chakkera, H.A.; Angadi, S.; Heilman, R.L.; Kaplan, B.; Scott, R.L.; Bollempalli, H.; Cha, S.S.; Khamash, H.A.; Huskey, J.L.; Mour, G.K.; et al. Cardiorespiratory Fitness (Peak Oxygen Uptake): Safe and Effective Measure for Cardiovascular Screening Before Kidney Transplant. J. Am. Heart Assoc. 2018, 7, e008662.
  • 16. Ross, R.M.; Murthy, J.N.; Wollak, I.D.; Jackson, A.S. The six minute walk test accurately estimates mean peak oxygen uptake. BMC Pulm. Med. 2010, 10, 31.
  • 17. Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647.
  • 18. Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16.
  • 19. Sterne, J.A.C.; Savovi´c, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898.
  • 20. McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282.
  • 21. Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926.
  • 22. Andrews, J.; Guyatt, G.; Oxman, A.D.; Alderson, P.; Dahm, P.; Falck-Ytter, Y.; Nasser, M.; Meerpohl, J.; Post, P.N.; Kunz, R.; et al. GRADE guidelines: 14. Going from evidence to recommendations: The significance and presentation of recommendations. J. Clin. Epidemiol. 2013, 66, 719–725.
  • 23. Meléndez Oliva, E.; Villafañe, J.H.; Alonso Pérez, J.L.; Alonso Sal, A.; Molinero Carlier, G.; Quevedo García, A.; Turroni, S.; Martínez-Pozas, O.; Valcárcel Izquierdo, N.; Sánchez Romero, E.A. Effect of Exercise on Inflammation in Hemodialysis Patients: A Systematic Review. J. Pers. Med. 2022, 12, 1188.
  • 24. Lee, L.S.; Tsai, M.-C.; Brooks, D.; Oh, I.P. Randomised controlled trial in women with coronary artery disease investigating the effects of aerobic interval training versus moderate intensity continuous exercise in cardiac rehabilitation: CAT versus MICE study. BMJ Open Sport Exerc. Med. 2019, 5, e000589.
  • 25. Villelabeitia-Jaureguizar, K.; Vicente-Campos, D.; Berenguel Senen, A.; Hernández Jiménez, V.; Ruiz Bautista, L.; Barrios GarridoLestache, M.E.; López Chicharro, J. Mechanical efficiency of high versus moderate intensity aerobic exer-cise in coronary heart disease patients: A randomized clinical trial. Cardiol. J. 2019, 26, 130–137.
  • 26. Reed, J.L.; Terada, T.; Cotie, L.M.; Tulloch, H.E.; Leenen, F.H.; Mistura, M.; Hans, H.; Wang, H.-W.; Vidal-Almela, S.; Reid, R.D.; et al. The effects of high-intensity interval training, Nordic walking and moderate-to-vigorous intensity continuous training on functional capacity, depression and quality of life in patients with coronary artery disease enrolled in cardiac rehabilitation: A randomized controlled trial (CRX study). Prog. Cardiovasc. Dis. 2022, 70, 73–83.
  • 27. Keteyian, S.J.; Hibner, B.A.; Bronsteen, K.; Kerrigan, D.; Aldred, H.A.; Reasons, L.M.; Saval, M.A.; Brawner, C.A.; Schairer, J.R.; Thompson, T.M.; et al. Greater Improvement in Cardiorespiratory Fitness Using Higher-Intensity Interval Training in the Standard Cardiac Rehabilitation Setting. J. Cardiopulm. Rehabil. Prev. 2014, 34, 98–105.
  • 28. Taylor, J.L.; Holland, D.J.; Keating, S.E.; Leveritt, M.D.; Gomersall, S.R.; Rowlands, A.V.; Bailey, T.G.; Coombes, J.S. Short-term and Long-term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation. JAMA Cardiol. 2020, 5, 1382.
  • 29. Carhart, R.L.; Ades, P.A. GENDER DIFFERENCES IN CARDIAC REHABILITATION. Cardiol. Clin. 1998, 16, 37–43.
  • 30. Trachsel, L.-D.; Nigam, A.; Fortier, A.; Lalongé, J.; Juneau, M.; Gayda, M. Moderate-intensity continuous exercise is superior to high-intensity interval training in the proportion of VO2peak responders after ACS. Rev. Española De Cardiol. Engl. Ed. 2019, 73, 725–733.
  • 31. Pearson, S.J. High Intensity Interval Training Vs Moderate Intensity Continuous Training in the Management of Metabolic Type Disease. MOJ Anat. Physiol. 2015, 1, 27–33.
  • 32. Way, K.; Vidal-Almela, S.; Keast, M.-L.; Hans, H.; Pipe, A.L.; Reed, J.L. The feasibility of implementing high-intensity interval training in car-diac rehabilitation settings: A retrospective analysis. Preprint 2020.
  • 33. Callum, K.J.; Gorely, T.; Crabtree, D.; Muggeridge, D.J.; Leslie, S.J. High-intensity interval training in patients with heart failure. Br. J. Card. Nurs. 2020, 15, 1–13.
  • 34. Hansen, D.; Abreu, A.; Ambrosetti, M.; Cornelissen, V.; Gevaert, A.; Kemps, H.; Laukkanen, A.J.; Pedretti, R.; Simonenko, M.; Wilhelm, M.; et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: Why and how: A position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 29, 230–245.
  • 35. Guiraud, T.; Nigam, A.; Gremeaux, V.; Meyer, P.; Juneau, M.; Bosquet, L. High-Intensity Interval Training in Cardiac Rehabilitation. Sports Med. 2012, 42, 587–605.