Analysis of the Active Measurement Systems of the Thoracic Range of Movements of the Spine: A Systematic Review and a Meta-Analysis

  1. Esteban-González, Pablo
  2. Sánchez-Romero, Eleuterio A.
  3. Villafañe, Jorge Hugo
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Universidad Europea de Canarias
    info

    Universidad Europea de Canarias

    Orotava, España

    ROR https://ror.org/051xcrt66

  3. 3 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
    info

    Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

    Milán, Italia

    ROR https://ror.org/016zn0y21

Revista:
Sensors

ISSN: 1424-8220

Año de publicación: 2022

Volumen: 22

Número: 8

Páginas: 3042

Tipo: Artículo

DOI: 10.3390/S22083042 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Sensors

Resumen

(1) Objective: to analyze current active noninvasive measurement systems of the thoracic range of movements of the spine. (2) Methods: A systematic review and meta-analysis were performed that included observational or clinical trial studies published in English or Spanish, whose subjects were healthy human males or females ≥18 years of age with reported measurements of thoracic range of motion measured with an active system in either flexion, extension, lateral bending, or axial rotation. All studies that passed the screening had a low risk of bias and good methodological results, according to the PEDro and MINORS scales. The mean values and 95% confidence interval of the reported measures were calculated for different types of device groups. To calculate the differences between the type of device measures, studies were pooled for different types of device groups using Review Manager software. (3) Results: 48 studies were included in the review; all had scores higher than 7.5 over 10 on the PEDro and MINORs methodological rating scales, collecting a total of 2365 healthy subjects, 1053 males and 1312 females; they were 39.24 ± 20.64 years old and had 24.44 ± 3.81 kg/m2 body mass indexes on average. We summarized and analyzed a total of 11,892 measurements: 1298 of flexoextension, 1394 of flexion, 1021 of extension, 491 of side-to-side lateral flexion, 637 of right lateral flexion, 607 of left lateral flexion, 2170 of side-to-side rotation, 2152 of right rotation and 2122 of left rotation. (4) Conclusions: All collected and analyzed measurements of physiological movements of the dorsal spine had very disparate results from each other, the cause of the reason for such analysis is that the measurement protocols of the different types of measurement tools used in these measurements are different and cause measurement biases. To solve this, it is proposed to establish a standardized measurement protocol for all tools

Información de financiación

The publication of this work has been financed by the European University of Madrid C/ Tajo s/n, 28670 Villaviciosa de Odón, Madrid, Spain.

Referencias bibliográficas

  • 10.1519/JSC.0000000000001578
  • 10.1007/s00586-006-0122-z
  • 10.1186/s12998-015-0058-7
  • 10.1007/s00586-013-3068-y
  • Negrini, (2013), Eur. J. Phys. Rehabil. Med., 49, pp. 597
  • 10.1016/S1529-9430(01)00006-7
  • Archer, (1974), Physiotherapy, 60, pp. 37
  • 10.14474/ptrs.2017.6.2.65
  • Hyytiäinen, (1991), Scand. J. Rehabil. Med., 23, pp. 3
  • Johnson, (2010), N. Am. J. Sports Phys. Ther. NAJSPT, 5, pp. 252
  • 10.4085/1062-6050-52.6.05
  • Seichert, (2008), Phys. Med. Rehabil. Kurortmed., 4, pp. 35
  • 10.1080/14038190701728251
  • 10.1054/math.1996.0256
  • 10.1016/j.jbiomech.2015.09.003
  • 10.1016/j.math.2008.10.004
  • 10.1016/0268-0033(89)90042-9
  • 10.1016/j.medcli.2016.02.025
  • 10.1136/bmj.n71
  • International Prospective Register of Systematic Reviews [Internet]https://www.crd.york.ac.uk/prospero/
  • 10.1016/S0895-4356(98)00131-0
  • 10.1046/j.1445-2197.2003.02748.x
  • 10.1016/j.joca.2020.02.836
  • Higgins, (2019)
  • 10.1034/j.1600-0412.2002.811104.x
  • Tederko, (2007), Ortop. Traumatol. Rehabil., 9, pp. 156
  • 10.3109/09593988709044180
  • 10.1097/00007632-199109000-00016
  • 10.3109/09593989309047453
  • 10.1016/0268-0033(96)00017-4
  • 10.1007/s00586-003-0618-8
  • 10.1007/s00402-004-0641-1
  • 10.1016/j.apergo.2004.10.015
  • 10.1016/j.jmpt.2007.01.010
  • 10.3171/SPI/2008/8/2/135
  • 10.1080/09638280802308998
  • 10.1007/s00774-009-0107-1
  • 10.1186/1471-2474-11-135
  • 10.1016/j.math.2010.05.004
  • 10.1007/s00586-010-1606-4
  • 10.2519/jospt.2011.3456
  • 10.1016/j.jmpt.2012.01.008
  • 10.1016/j.pmrj.2012.01.009
  • 10.4085/1062-6050-47.1.52
  • 10.2519/jospt.2012.4164
  • Wang, (2012), PLoS ONE, 7
  • 10.2340/16501977-1015
  • 10.1016/j.math.2013.03.002
  • 10.2147/CIA.S59548
  • 10.1016/j.math.2014.04.011
  • Elenay, (2015), J. Back Musculoskelet. Rehabil., 28, pp. 135, 10.3233/BMR-140501
  • 10.1519/JSC.0000000000000749
  • 10.1016/j.jmpt.2014.12.007
  • 10.3233/BMR-160680
  • 10.1016/j.ptsp.2015.09.003
  • 10.2519/jospt.2016.6159
  • 10.1016/j.jmpt.2016.05.008
  • 10.1590/bjpt-rbf.2014.0162
  • 10.1016/j.jbiomech.2016.02.030
  • 10.1016/j.gaitpost.2017.01.011
  • 10.1016/j.jmpt.2017.07.008
  • 10.1016/j.jbiomech.2018.01.017
  • 10.1136/bmjopen-2017-019371
  • 10.1016/j.jbiomech.2018.08.033
  • 10.7717/peerj.4431
  • 10.1016/j.spinee.2019.02.002
  • 10.1016/j.jmpt.2018.11.022
  • 10.1016/j.ptsp.2019.08.013
  • 10.1016/j.jht.2020.09.001
  • 10.2147/CIA.S113352
  • 10.2522/ptj.20150501
  • 10.1097/BRS.0000000000002388
  • 10.1007/s00586-019-05953-y