Improvements in Perimeter Thoracic Mobility on Patients with COPD after Pulmonary Rehabilitation: A Case Series

  1. Massaccesi, Roxana
  2. Pedersini, Paolo
  3. Villafañe, Jorge Hugo
  4. Sánchez Romero, Eleuterio A.
  5. Battaglino, Andrea
  6. Rossino, Elena
  7. Corbellini, Camilo
  1. 1 Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports
  2. 2 Ospedale San Luigi Gonzaga
    info

    Ospedale San Luigi Gonzaga

    Orbassano, Italia

    ROR https://ror.org/04nzv4p86

  3. 3 Casa di Cura Villa Serena
  4. 4 IRCCS Fondazione Don Carlo Gnocchi
  5. 5 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

Revista:
Electronic Journal of General Medicine

ISSN: 2516-3507

Año de publicación: 2022

Volumen: 19

Número: 3

Páginas: em361

Tipo: Artículo

DOI: 10.29333/EJGM/11671 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Electronic Journal of General Medicine

Resumen

Purpose: To evaluate if the perimeter thoracic mobility (PTM) improvements could be identified by measuring its perimeter during pulmonary rehabilitation (PR), searching for its correlations with standards clinical and functional assessments.Design: A case series.Methods: Twenty patients underwent a PR and accessed the arterial blood gas analyses, FVC, FEV1, FEV/FEV1, 6-minute walk test (6MWT), and the PTM measurement assessed at the angle of the Louis level and the xiphoid process level.Results: PR improved PTM on the angle of Louis (p=0.03) but not on the xiphoid process. These improvements are negatively correlated with improvements in PaCO2.Conclusions: In COPD patients, a successful PR is accompanied by a reduction of the upper chest wall resting perimeter and by an improvement of the perimeter thoracic mobility.Clinical relevance: The centimeter tape is a useful device able to identify PTM improvements in COPD patients.

Referencias bibliográficas

  • 1. Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: The GOLD science committee report 2019. Eur Respir J. 2019;53(5):1900164. https://doi.org/10.1183/13993003.00164-2019 PMid: 30846476
  • 2. Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: Role of exercise capacity and health status. Am J Respir Crit Care Med. 2003;167(4):544-9. https://doi.org/10.1164/rccm.200206-583OC PMid: 12446268
  • 3. Aliverti A, Stevenson N, Dellacà RL, Lo Mauro A, Pedotti A, Calverley PM. Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax. 2004;59(3):210-6. https://doi.org/10.1136/thorax.2003. 011494 PMid:14985554 PMCid:PMC1746979
  • 4. Gagliardi E, Innocenti Bruni G, Presi I, Gigliotti F, Scano G. Thoraco-abdominal motion/displacement does not affect dyspnea following exercise training in COPD patients. Respir Physiol Neurobiol. 2014;190:124-30. https://doi.org/ 10.1016/j.resp.2013.10.005 PMid:24140573
  • 5. Fronczek M, Mysłek K, Sajek A, Padula G, Kopacz K. Effect of diaphragm postisometric relaxation in older adults. Top Geriatr Rehabil. 2019;35(2):104-7. https://doi.org/10.1097/ TGR.0000000000000207
  • 6. de Souza GHM, Ferraresi C, Moreno MA, et al. Acute effects of photobiomodulation therapy applied to respiratory muscles of chronic obstructive pulmonary disease patients: A double-blind, randomized, placebo-controlled crossover trial. Lasers Med Sci. 2020;35(5):1055-63. https://doi.org/10.1007/s10103-019-02885-3 PMid: 31654154
  • 7. Bockenhauer SE, Chen H, Julliard KN, Weedon J. Measuring thoracic excursion: Reliability of the cloth tape measure technique. J Am Osteopath Assoc. 2007;107(5):191-6. PMid:17596587
  • 8. da Silva Caldeira V, Starling CC, Britto RR, Martins JA, Sampaio RF, Parreira VF. Reliability and accuracy of cirtometry in healthy adults. J Bras Pneumol. 2007;33(5):519-26. https://doi.org/10.1590/s180637132007 000500006 PMid:18026649
  • 9. Nici L, Donner C, Wouters E, et al. American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med. 2006;173(12):1390-413. https://doi.org/10.1164/rccm.2005 08-1211ST PMid:16760357
  • 10. Massaroni C, Carraro E, Vianello A, et al. Optoelectronic plethysmography in clinical practice and research: A review. Respiration. 2017;93(5):339-54. https://doi.org/ 10.1159/000462916 PMid:28329750
  • 11. Corbellini C, Boussuges A, Villafañe JH, Zocchi L. Diaphragmatic mobility loss in subjects with moderate to very severe COPD may improve after in-patient pulmonary rehabilitation. Respir Care. 2018;63(10):1271-80. https://doi.org/10.4187/respcare.06101 PMid:30065081
  • 12. de Cordoba Lanza F, de Camargo AA, Archija LR, Selman JP, Malaguti C, Dal Corso S. Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects. Respir Care. 2013;58(12):2107-12. https://doi.org/ 10.4187/respcare.02415 PMid:23674814
  • 13. Enright PL, Sherrill DL. Reference equations for the sixminute walk in healthy adults. Am J Respir Crit Care Med. 1998;158(5):1384-7. https://doi.org/10.1164/ajrccm.158.5. 9710086 PMid:9817683
  • 14. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38. https://doi.org/10.1183/09031936.05.00034805 PMid: 16055882
  • 15. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13-64. https://doi. org/10.1164/rccm.201309-1634ST PMid:24127811
  • 16. Jubran A, Tobin MJ. The effect of hyperinflation on rib cageabdominal motion. Am Rev Respir Dis. 1992;146(6):1378- 82. https://doi.org/10.1164/ajrccm/146.6.1378 PMid: 1456551
  • 17. Georgiadou O, Vogiatzis I, Stratakos G, et al. Effects of rehabilitation on chest wall volume regulation during exercise in COPD patients. Eur Respir J. 2007;29(2):284-91. https://doi.org/10.1183/09031936.00121006 PMid: 17107987
  • 18. Puente-Maestu L, Abad YM, Pedraza F, Sánchez G, Stringer WW. A controlled trial of the effects of leg training on breathing pattern and dynamic hyperinflation in severe COPD. Lung. 2006;184(3):159-67. https://doi.org/10.1007/ s00408-005-2576-x PMid:16902841
  • 19. Scichilone N, La Sala A, Bellia M, et al. The airway response to deep inspirations decreases with COPD severity and is associated with airway distensibility assessed by computed tomography. J Appl Physiol (1985). 2008;105(3):832-8. https://doi.org/10.1152/japplphysiol. 01307.2007 PMid:18617628 PMCid:PMC2536818
  • 20. Wilkens H, Weingard B, Lo Mauro A, Schena E, Pedotti A, Sybrecht GW, Aliverti Aet al. Breathing pattern and chest wall volumes during exercise in patientswith cystic fibrosis, pulmonary fibrosis and COPD before and after lung transplantation. Thorax. 2010;65(9):808-14. https://doi.org /10.1136/thx.2009.131409 PMid:20805177
  • 21. Aliverti A, Quaranta M, Chakrabarti B, Albuquerque AL, Calverley PM. Paradoxical movement of the lower ribcage at rest and during exercise in COPD patients. Eur Respir J. 2009;33(1):49-60. https://doi.org/10.1183/09031936. 00141607 PMid:18799505
  • 22. Vogiatzis I, Stratakos G, Athanasopoulos D, et al. Chest wall volume regulation during exercise in COPD patients with GOLD stages II to IV. Eur Respir J. 2008;32(1):42-52. https://doi.org/10.1183/09031936.00155207 PMid: 18321930
  • 23. Yan S, Sliwinski P, Macklem PT. Association of chest wall motion and tidal volume responses during CO2 rebreathing. J Appl Physiol (1985). 1996;81(4):1528-34. https://doi.org/10.1152/jappl.1996.81.4.1528 PMid: 8904564