Vascular proteomics

  1. Darde, Veronica M. 1
  2. Vivanco, Fernando 12
  3. De la Cuesta, Fernando 1
  4. Barderas, Maria G. 13
  5. Alvarez-Llamas, Gloria 1
  6. Mas, Sebastian 1
  1. 1 Fundación Jiménez Díaz
    info

    Fundación Jiménez Díaz

    Madrid, España

    ROR https://ror.org/049nvyb15

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 Hospital Nacional de Parapléjicos
    info

    Hospital Nacional de Parapléjicos

    Toledo, España

    ROR https://ror.org/04xzgfg07

Revista:
PROTEOMICS - Clinical Applications

ISSN: 1862-8346

Año de publicación: 2007

Volumen: 1

Número: 9

Páginas: 1102-1122

Tipo: Artículo

DOI: 10.1002/PRCA.200700190 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: PROTEOMICS - Clinical Applications

Resumen

The characterization of patients with acute coronary syndromes (ACS) at the molecular andcellular levels provides a novel vision for understanding the pathological and clinical expres-sion of the disease. Recent advances in proteomic technologies permit the evaluation of sys-tematic changes in protein expression in many biological systems and have been extensivelyapplied to cardiovascular diseases (CVD). The cardiovascular system is in permanent intimatecontact with blood, making blood-based biomarker discovery a particularly worthwhileapproach. Thus, proteomics can potentially yield novel biomarkers reflecting CVD, establishearlier detection strategies, and monitor response to therapy. Here we review the differentproteomic strategies used in the study of atherosclerosis and the novel proteins differentiallyexpressed and secreted by atherosclerotic lesions which constitute novel potential biomarkers(HSP-27, Cathepsin D). Special attention is paid to MS-Imaging of atheroma plaque and thegeneration, for the first time, of 2-D images of lipids, showing the distribution of thesemolecules in the different areas of the atherosclerotic lesions. In addition new potential bio-markers have been identified in plasma (amyloid A1a, transtherytin), circulating cells (proteinprofile in monocytes from ACS patients) and individual cells constituents of atheroma pla-ques (endothelial, VSMC, macrophages) which provide novel insights into vascular patho-physiology.

Referencias bibliográficas

  • [1] Gállego-Delgado, J., Lázaro, A., Osende, J., Barderas, M. G.etal., Proteomic approach in the search of new cardiovascularbiomarkers.Kid. Int.2005,68, S1–S5.
  • [2] Ross, R., Atherosclerosis, an inflammatory disease.N. Engl.J. Med.1999,340, 115–126.
  • [3] Libby, P., Ridkker, P. M., Maseri, A., Inflammation and athero-sclerosis.Circulation2002,105, 1135–1143
  • [4] Moreno, P. R., Falk, E., Palacios, I. F., Nevell, J. B.et al., Mac-rophage infiltration in acute coronary syndromes. Implica-tions for plaque rupture.Circulation1994,90, 775–778.
  • [5] Ruggeri, Z. M., Platelets in atherothrombosis.Nat. Med.2002,8, 1227–1234.
  • [6] Fuster, V., Badimon, L., Badimon, J. J., Chesebro, J. H., Thepathogenesis of coronary artery disease and the acute cor-onary syndromes (1).N. Engl. J. Med.1992,326, 242–250.
  • [7] Claessens, C., Claessens, P., Claessens, M., Verschueren, R.,Claessens, J., Changes in mortality of acute myocardialinfarction as a function of a changing tratment during thelast two decades.Jpn. Heart.2000,41, 683–695.
  • [8] Mosterd, A., Cost, B., Hoes, A. W., De Bruijne, M. C.et al.,The prognosis of heart failure in general population: TheRotterdam study.Eur. Heart. J.2001,22, 1318–1327.
  • [9] Van de Werf, F., Ardissino, D., Betriu, A., Cokkinos, D. V.et al.,Task Force Report Management of acute myocardial infarc-tion in patients presenting with ST-segment elevation.Eur.Heart J.2003,24, 28–66.
  • [10] Danesh, J., Wheeler, J. G., Hirschfield, G. M., Eda, S.et al.,C-reactive protein and other circulating markers of inflamma-tion in the prediction of coronary heart disease.N. Engl. J.Med.2004,350, 1387–1397.
  • [11] Sidney, C., Smith, J., Anderson, J. L., Cannon, R. O.et al.,CDC/AHA Workshop on Markers of Inflammation and Cardi-ovascular Disease Application to Clinical and Public HealthPractice: Report from the Clinical Practice Discussion Group.Circulation2004,110, e550–e55.
  • [12] Mayr, M., Mayr, U., Chung, Y. L., Yin, X.et al., Vascular pro-teomics: Linking proteomic and metabolomic changes.Pro-teomics2004,4, 3751–3761.
  • [13] Marian, A. J., Nambi, V., Biomarkers of cardiac disease.Expert Rev. Mol. Diagn.2004,4, 805–820.
  • [14] Glass, C. K., Witzum, J. L., Atherosclerosis: The road ahead.Cell2001,104, 503–516.
  • [15] Hanson, G. K., Inflammation, atherosclerosis, and coronaryartery disease.N. Engl. J. Med.2005,352, 1685–1695.
  • [16] Wasserman, E., Shipley, N. M., Atherothrombosis in acutecoronary syndromes: Mechanisms, markers and mediatorsof vulnerability.Mount Sin. J. Med.2006,73, 431–439.
  • [17] Vivanco, F. (Ed.),Cardiovascular Proteomics. Methods andProtocols, Humana Press, Totowa, New Jersey 2007,Vol.357.
  • [18] Arab, S., Gramolini, A. O., Ping, P., Kislinger, T., Stanley, B.,Cardiovascular proteomics.J. Am. Coll. Cardiol.2006,48,1733–1741.
  • [19] Vivanco, F., Darde, V. M., De la Cuesta, F., Barderas, M. G.,Cardiovascular proteomics.Curr. Proteomics2006,3, 147–170.
  • [20] Hwang, S. I., Thumar, J., Lundgren, D. H., Rezaul, K.et al.,Direct cancer tissue proteomics: A method to identify can-didate cancer biomarkers from formalin-fixed parrafin-embebed archival tissues.Oncogene2007,26, 65–76.
  • [21] Bagnato, C., Thumar, J., Mayya, V., Hwang, S. I.et al., Pro-teomic analysis of human coronary atherosclerotic plaque:A feasibility study of direct tissue proteomics by liquid-chromatography and tandem mass spectrometry.Mol. Cell.Proteomics2007,6, 1088–1102.
  • [22] Talusan, P., Bedri, S., Yang, S., Kattapuram, T.et al., Analysisof intimal proteoglycans in atherosclerosis-prone andatherosclerosis-resistant human arteries by mass spec-trometry.Mol. Cell Proteomics2005,4, 1350–1357.
  • [23] Mayr, M., Chung, Y. L., Mayr, U., Yin, X.et al., Proteomic andmetabolomic analyses of atherosclerotic vessels from apo-lipoprotein E deficient mice reveal alterations in inflamma-tion, oxidative stress, and energy metabolism.Arterioscler.Thromb. Vasc. Biol.2005,25, 2135–2142.
  • [24] Martinet, W., Schrijvers, D. M., De Meyer, G. R., Herman, A.G., Kockx, M. M., Western array analysis of human athero-sclerotic plaques. Down regulation of apoptosis-linked gene2.Cardiovasc. Res.2003,60, 259–267.
  • [25] Martinet, W., Western array analysis of human athero-sclerotic plaques.Methdods Mol. Biol.2006,357, 165–178.
  • [26] Donners, M., Verluyten, M. J., Bouwman, F. G., Mariman, E.et al., Proteomic analysis of differential protein expressionin human atherosclerotic plaque progression.J. Pathol.2005,206, 39–45.
  • [27] Hilker, M., Buerke, M., Guckenbiehl, M., Schwertz, H.et al.,Rapamycin reduces neointima formation during vascularinjury.VASA2003,32, 10–13.
  • [28] Slevin, M., Elasbali, A. B., Turu, M., Krupinski, J.et al., Iden-tification of differential protein expresión associated withdevelopment of unstable human carotid plaques.Am. J.Pathol.2006,168, 1004–1021.
  • [29] Durán, M. C., Mas, S., Martin-Ventura, J. L., Meilhac, O.et al.,Proteomic analysis of human vessels: Application to ather-osclerotic plaques.Proteomics2003,3, 973–978.
  • [30] Durán, M. C., Martin-Ventura, J. L., Mohammed, S., Barderas, M. G.et al., Atorvastatin modulates the profile ofproteins released by human atherosclerotic plaques.Eur. J.Pharmacol.2007,562, 119–129.
  • [31] Duran, M. C., Martín-Ventura, J. L., Mas, S., Barderas, M. G.et al., Characterization of the human atheroma plaquesecretome by proteomic analysis.Methods Mol. Biol.2006,357, 141–150.
  • [32] Vivanco, F., Martin-Ventura, J. L., Duran, M. C., Barderas, M.G.et al., Quest for novel cardiovascular biomarkers by pro-teomic analysis.J. Proteome Res.2005,4, 1181–1191.
  • [33] Blanco-Colio, L., Martín-Ventura, J. L., Vivanco, F., Michel, J.B.et al., Biology of atherosclerotic plaques: What we arelearning from proteomic analysis.Cardiovasc. Res.2006,72,18–29.
  • [34] Martín-Ventura, J. L., Duran, M. C., Blanco-Colio, L., Meilhac,O.et al., Identification by a differential proteomic approachof heat shock protein 27 as a potential marker of athero-sclerosis.Circulation2004,110, 2216–2219.
  • [35] Martin-Ventura, J. L., Nicolas, V., Houard, X., Blanco-Colio, L.et al., Biological significance of decreased HSP27 in humanatherosclerosis.Arterioscler. Thromb. Vasc. Biol.2006,26,1337–1343.
  • [36] Galis, Z. S., Sukhova, G. K., Lark, M. W., Libby, P., Increasedexpression of matrix metalloproteinases and matrixdegrading activity in vulnerable regions of human athero-sclerotic plaques.J. Clin. Invest.1994,94, 2493–2503.
  • [37] Lijnen, H. R., Plasmin and matrix metalloproteinases in vas-cular remodelling.Thromb. Haemost.2001,86, 324–333.
  • [38] Fogari, R., Derosa, G., Lazzari, P., Zoppi, A.et al., Effect ofamlodipine-atorvastatin combination on fibrinolysis inhypertensive hypercholesterolemic patients with insulinresistance.Am. J. Hypertens.2004,17, 823–827.
  • [39] Martin-Ventura, J. L., Tuñon, J., Duran, M. C., Blanco-Colio,L.et al., Vascular protection of dual therapy (atorvastatin-amlodipine) in hypertensive patients.J. Am. Soc. Nephrol.2006,17, S189–S193.
  • [40] Dupont, A., Corseaux, D., Dekeyzer, O., Drobecq, H.et al.,The proteome and secretome of human arterial smoothmuscle cells.Proteomics2005,5, 585–596.
  • [41] Dupont, A., Pinet, F., The proteome and secretome of humanarterial smooth muscle cells.Methods Mol. Biol.2006,357,225–233.
  • [42] Liao, D. F., Jin, Z. G., Baas, A. S., Daum, G.et al., Purificationand identification of secreted oxidative stress-induced fac-tors from vascular smooth muscle cells.J. Biol. Chem.2000,275, 189–196.
  • [43] Dupont, A., Tokarski, C., Dekeyzer, O., Guihot, A. L.et al.,Two-dimensional maps and databases of the human mac-rophage proteome and secretome.Proteomics2004,4,1761–1778.
  • [44] Fach, E. M., Garulacan, L., Gao, J., Xiao, Q.et al., In vitrobiomarker discovery for atherosclerosis by proteomics.Mol.Cell. Proteomics2004,3, 1200–1210.
  • [45] Rajala, M. W., Scherer, P. E., Minireview: The adipocyte–atthe crossroads of energy homeostasis, inflammation, andatherosclerosis.Endocrinology2003,144, 3765–3773.
  • [46] Chen, X., Cushman, S. W., Pannell, L. K., Hess, S., Quantita-tive proteomic analysis of the secretory proteins from ratadipose cells using a 2D liquid chromatography-MS/MSapproach.J. Proteome Res.2005,4, 570–577.
  • [47] Wang, P., Mariman, E., Keijer, J., Bouwman, F.et al., Profilingof the secreted proteins during 3T3-L1 adipocyte differ-entiation leads to the identification of novel adipokines.Cell.Mol. Life Sci.2004,61, 2405–2417.
  • [48] Kratchmarova, I., Kalume, D. E., Blagoev, B., Scherer, P. E.etal., A proteomic approach for identification of secreted pro-teins during the differentiation of 3T3-L1 preadipocytes toadipocytes.Mol. Cell. Proteomics2002,1, 213–222.
  • [49] Alvarez-Llamas, G., Szalowska, E., de Vries, M. P., Weening,D.et al., Characterization of the human visceral adipose tis-sue secretome.Mol. Cell. Proteomics, 2007,6, 589–600.
  • [50] Caprioli, R. M., Farmer, T. B., Gile, J., Molecular imaging ofbiological samples: Localization of peptides and proteinsusing MALDI-TOF MS.Anal. Chem.1997,69, 4751–4760.
  • [51] Stoeckli, M., Chaurand, P., Hallahan, D. E., Caprioli, R. M.,Imaging mass spectrometry: A new technology for theanalysis of protein expression in mammalian tissues.Nat.Med.2001,7, 493–496.
  • [52] Brunelle, A., Touboul, D., Laprevote, O., Biological tissueimaging with time-of-flight secondary ion mass spectrome-try and cluster ion sources.J. Mass Spectrom.2005,40, 985–999.
  • [53] Wiseman, J. M., Ifa, D. R., Song, Q., Cooks, R. G., Tissue im-aging at atmospheric pressure using desorption electro-spray ionization (DESI) mass spectrometry.Angew Chem.Int. Ed. Engl.2006,45, 7188–7192.
  • [54] Chaurand, P., Norris, J., Cornett, S., Mobley, J. A., Caprioli,R., New developments in profiling and imaging of proteinsfrom tissue sections by MALDI mass spectrometry.J. Pro-teome Res.2006,5, 2889–2900.
  • [55] Stoeckli, M., Knochenmuss, R., McCombie, G., Mueller, D.etal., MALDI MS imaging of amyloid.Methods Enzymol.2006,412, 94–106.
  • [56] Han, J., Schey, K. L., MALDI tissue imaging of ocular lensalpha-crystallin.Invest. Ophthalmol. Vis. Sci.2006,47, 2990–2996.
  • [57] Meistermann, H., Norris, J. L., Aerni, H. R., Cornett, D. S.etal., Biomarker discovery by imaging mass spectrometry:Transthyretin is a biomarker for gentamicin-inducednephrotoxicity in rat.Mol Cell. Proteomics2006,5, 1876–1886.
  • [58] Roy, S., Touboul, D., Brunelle, A., Germain, D. P.et al.,Im-aging mass spectrometry: A new tool for the analysis of skinbiopsy. Application in Fabry’s disease.Ann. Pharm. Fr.2006,64, 328–334.
  • [59] Mas, S., Toubul, D., Brunelle, A., Aragoncillo, P.et al., Lipidcartography of atherosclerotic plaque by cluster TOF SIMSimaging. Analyst2007,132, 24–26.
  • [60] Malmberg, P., Borner, K., Chen, Y., Friberg, P.et al., Localiza-tion of lipids in the aortic wall with imaging TOF-SIMS.Bio-chim. Biophys. Acta2007,1771, 185–195.
  • [61] Watson, A. D., Thematic review series: Systems biologyapproaches to metabolic and cardiovascular disorders.Lipidomics: A global approach to lipid analysis in biologicalsystems.J. Lipid Res.2006,47, 2101–2111.
  • [62] Touboul, D., Brunelle, A., Laprevote, O., Structural analysisof secondary ions by post-source decay in time-of-flightsecondary ion mass spectrometry.Rapid Commun. MassSpectrom.2006,20, 703–709.
  • [63] De Caterina, R., Endothelial dysfunctions: Commondenominators in vascular disease.Curr. Opin. Lipidol.2000,11, 9–23.
  • [64] Blann, A. D., Assessment of endothelial dysfunction: Focuson atherothrombotic disease.Pathophysiol. Haemost.Thromb.2004,33, 256–261.
  • [65] Gonzalez-Cabrero, J., Pozo, M., Duran, M. C., De Nicolas, R.et al., The proteome of endotelial cells.Methods Mol. Biol.2006,357, 181–198.
  • [66] Brunneel, A., Labas, V., Mailloux, A., Sharma, S.et al., Pro-teomic study of human umbilical vein endothelial cells inculture.Proteomics2003,3, 714–723.
  • [67] Kamino, H., Hiratsuka, M., Toda, T., Nishigaki, R.et al.,Searching for genes involved in arteriosclerosis: Proteomicanalysis of cultured human umbilical vein endotelial cellsundergoing replicative senescence.Cell Struct. Funct.2003,28, 495–503.
  • [68] Kinumi, T., Ogawa, Y., Kimata, J., Saito, Y.et al., Proteomiccharacterization of oxidative dysfunction in human umbili-cal vein endothelial cells (HUVEC) induced by exposure tooxidized LDL.Free Rad. Res.2005,39, 1335–1344.
  • [69] Sprenger, R. R., Speijer, D., Back, J. W., De Coster, C. G.et al.,Comparative proteomics of human endothelial cell caveolaeand rafts using two-dimensional gel electrophoresis andmass spectrometry.Electrophoresis2004,25, 156–172.
  • [70] Sprenger, R. R., Horrevoets, J. G., Proteomic study ofcaveolae and rafts isolated from human endothelial cells.Methods Mol. Biol.2006,357, 199–213.
  • [71] Fuchs, D., Erhard, P., Turner, R., Rimbach, G.et al., Genisteinreverses changes of the proteome induced by oxidized-LDL n Eahy 926 human endothelial cells.J. Proteome Res.2005,4, 369–376.
  • [72] Clarkson, T. B., Soy, soy phytoestrogens and cardiovasculardiseases.J. Nutr.2002,132, 566S–569S.
  • [73] Cassidy, A., Griffin, B., Phytooestrogens: A potential role inthe prevention of CHD?.Proc. Nutr. Soc.1999,58, 193–199.
  • [74] Littlewood, T. D., Bennett, M. R., Apoptotic cell death inatherosclerosis.Curr. Opin. Lipidol.2003,14, 469–475.
  • [75] Becker, R. C., Proteomics, metabolomics and circulatingendothelial progenitor cells in acute coronary syndromes.J.Thromb. Thrombolysis2006,21, 203–206.
  • [76] Boos, C. J., Lip, G. Y., Blann, A. D., Circulating endothelialcells in cardiovascular diseases.J. Am. Coll. Cardiol.2006,48, 1538–1547.
  • [77] Yeh, E. T., Zhang, S., Wu, H. D., Korbling, M.et al., Transdif-ferentiation of human peripheral blood CD341enriched cellpopulation into cardiomyocytes, endothelial cells, andsmooth muscle cellsin vivo.Circulation2003,108, 2070–2073.
  • [78] Lee, K. W., Lip, G. Y., Tayebjee, M., Foster, W., Blann, A. D.,Circulating endothelial cells, von Willebrand factor, inter-leukin-6, and prognosis in patients with acute coronary syn-dromes.Blood2005,105, 526–532.
  • [79] Werner, N., Kosiol, S., Schiegl, T., Ahlers, P.et al., Circulatingendothelial progenitor cells and cardiovascular outcomes.N. Engl. J. Med.2005,353, 999–1007.
  • [80] McGregor, A., Kempster, L., Wait, R., Welson, S. Y.et al.,Identification and mapping of human saphenous vein med-ial smooth muscle proteins by two dimensional gel electro-phoresis.Proteomics2001,1, 1405–1414.
  • [81] McGregor, E., Kempster, L., Wait, R., Gosling, M.et al.,F-actin capping (CapZ) and other contractile saphenous veinsmooth muscle proteins are altered by hemodynamicstress.Mol. Cell. Proteomics2004,3, 115–124.
  • [82] Pellieux, C., Desgeorges, A., Pigeon, C. H., Chambaz, C.etal., CapG, a gelsolin family protein modulating protectiveeffects of unidirectional shear stress.J. Biol. Chem.2003,278, 29136–29134.
  • [83] Dupont, A., Corseaux, D., Dekeyzer, O., Drobecq, H.et al.,The proteome and secretome of human arterial smoothmuscle cells.Proteomics2005,5, 585–596.
  • [84] Patton, W., Erdjument-Bromage, H., Marks, A. R., Tempst, P.,Taubman, M. B., Components of the protein synthesis andfolding machinery are induced in vascular smooth musclecells by hypertrophic and hyperplastic agents.J. Biol. Chem.1995,270, 21404–21410.
  • [85] Mayr, M., Siow, R., Chung, Y. L., Mayr, U.et al., Proteomicand metabolomic analysis of vascular smooth muscle cells.Role of PKCd.Circ. Res.2004,94, e87–e96.
  • [86] Leitges, M., Mayr, M., Braun, U., Mayr, U.et al., Exacerbatedvein graft arteriosclerosis in protein kinase Cdelta-null mice.J. Clin. Invest.2001,108, 1505–1512.
  • [87] Sukanov, S., Delafontaine, P., Protein chip-based microarrayprofiling of oxidized low density lipoprotein-treated cells.Proteomics2005,5, 1274–1280.
  • [88] Yang, P. Y., Rui, Y. C., Yan, P. Y., Yu, Y. L., Proteomic analysisof foam cells.Meth. Mol. Biol.2006,357, 297–305.
  • [89] Dupont, A., Tokarski, C., Dekeyzer, O., Guihot, A. L.et al.,Two-dimensional maps and databases of the human mac-rophage proteome and secretome.Proteomics2004,4,1761–1778.
  • [90] Verhoeckx, K. C., Bijlsma, S., De Groene, E. M., Witkamp, R.F.et al., A combination of proteomics, principal componentanalysis and transcriptomics is a powerful tool for theidentification of biomarkers for macrophage maturation inthe U937 cell line.Proteomics2004,4, 1014–1028.
  • [91] Gadgil, H. S., Pabst, K. M., Giorgianni, F., Umstot, E. S.etal., Proteome of monocytes primed with lipopolysacchar-ide: Analysis of the abundant proteins.Proteomics2003,3,1767–1780.
  • [92] Rakkola, R., Matikainen, S., Nyman, T. A., Proteome analy-sis of human macrophages reveals the upregulation ofmanganese-containing superoxide dismutase after toll-likereceptor activation.Proteomics2007,7, 378–384.
  • [93] Yu, Y., Yang, P., Rui, Y., Yang, P., Proteomic studies of mac-rophage derived foam cell from human U937 cell line usingtwo-dimensional gel electrophoresis and tandem massspectrometry.J. Cardiovasc. Pharmacol.2003,42, 782–789.
  • [94] Yu, Y., Yang, P. Y., Fan, H. Z., Huang, Z. Y.et al., Proteinexpression in macrophage derived foam cells: Compara-tive analysis by two-dimensional gel electrophoresis.ActaPharmacol. Sin.2003,24, 873–877.
  • [95] Kang, J. H., Kim, H. T., Choi, M., Lee, W.et al., Proteomeanalysis of human monocytic THP-1 cells primed with oxi-dized low-density lipoproteins.Proteomics2006,6, 1261–1273.
  • [96] Tuomisto, T. T., Riekkinen, M. S., Viita, H., Levonen, A. L.,Ylä-Herttuala, S., Analysis of gene and protein expresiónduring monocyte-macrophage differentiation and choles-terol loading cDNA and protein array study.Athero-sclerosis2005,180, 283–291.
  • [97] Tuomisto, T. T., Binder, B. R., Ylä-Herttuala, S., Genetics,genomics and proteomics in atherosclerosis research.Ann. Med.2005,37, 323–332.
  • [98] Conway, J. P., Kinter, M., Proteomic and transcriptomicanalyses of macrophages with an increased resistance tooxidized low density lipoprotein (oxLDL) induced citotoxi-city generated by chronic exposure to oxLDL.Mol. Cell.Proteomics2005,4, 1522–1540.
  • [99] Bobryshev, Y. V., Lord, R. S., Parsson, H., Immunopheno-typic analysis of the aortic aneurysm wall suggests thatvascular dendritic cells are involved in immune responses.Cardiovasc. Surg.1998,6, 240–249.
  • [100] Bobryshev, Y. V. Dendritic cells and their involvement inatherosclerosis,Curr. Opin. Lipidol.2000,11, 511–517.
  • [101] Yilmaz, A., Lochno, M., Traeg, F., Cicha, I.et al., Athero-sclerosis: Emergence of dendritic cells in rupture-proneregions of vulnerable carotid plaques.Atherosclerosis2004,176, 101–110.
  • [102] Phipps, R. P., Atherosclerosis: The emerging role ofinflammation and the CD40-CD40 ligand system.Proc.Natl. Acad. Sci. USA2000,97, 6930–6932.
  • [103] Rivollier, A., Perrin-Cocon, L., Luches, S., Diemer, H.et al.,High expression of antioxidant proteins in dendritic cells.Possible implications in atherosclerosis. Mol. Cell. Prote-omics2006,5, 726–736.
  • [104] Anderson, N. L., Anderson, N. G., The human plasma protein.Mol. Cell. Proteomics2002,1, 845–867
  • ]105] Righetti, P. G., Castagna, A., Antonioli, P., Boschetti, E.,Prefractionation techniques in proteome analysis: Themining tools of the third millennium.Electrophoresis2005,26, 297–319.
  • [106] Zhang, H., Liu, A. Y., Loriaux, P., Wollscheid, B.et al., Massspectrometric detection of tissue proteins in plasma.Mol.Cell. Proteomics2007,6, 64–71.
  • [107] Berhane, B. T., Zong, C., Liem, D. A., Huang, A.et al., Car-diovascular-related proteins identified in human plasma bythe HUPO plasma proteome project pilot phase.Proteom-ics2005,5, 3520–3530.
  • [108] Anderson, L., Candidate-based proteomics in the searchfor biomarkers of cardiovascular diseases.J. Physiol.2005,563.1, 23–60.
  • [109] Mateos-Caceres, P. J., Garcia-Mendez, A., Lopez-Farre, A.,Macaya, C.et al., Proteomic analysis of plasma frompatients during an acute coronary syndrome.J. Am. Coll.Cardiol.2004,44, 1578–1583.
  • [110] Alonso-Orgaz, S., Moreno, L., Macaya, C., Rico, L.et al.,Proteomic study of plasma from moderate hypercholes-terolemic patients.J. Proteome Res.2006,5, 2301–2308.
  • [111] Tabibiazar, R., Wagner, R. A., Deng, A., Tsao, P. S., Querte-mous, T., Proteomic profiles of serum inflammatory mark-ers accurately predict atherosclerosis in mice.Physiol.Genomics2006,25, 194–202.
  • [112] Di Serio, F., Amodio, G., Ruggieri, E., De Sario, R.et al.,Proteomic approach to the diagnosis of acute coronarysyndrome: Preliminary results.Clin. Chim. Acta2005,357,226–235.
  • [113] Abdul-Salam, V. B., Paul, G. A., Ali, J. O., Gibb, S. R.et al.,Identification of plasma protein biomarkers associatedwith idiopathic pulmonary arterial hypertension.Proteom-ics2006,6, 2286–2294.
  • [114] Diamandis, E., Serum proteomic profiling by matrix-assis-ted laser desorption-ionization time of flight mass spec-trometry for cancer diagnosis: Next steps.Cancer Res.2006,66, 5540–5541.
  • [115] Darde, V. M., Barderas, M. G., Vivanco, F., Depletion ofhigh-abundance proteins in plasma by immunoaffinitysubtraction for two-dimensional difference gel electropho-resis analysis.Methods Mol. Biol.2006,357, 351–364.
  • [116] Fu, Q., Bovenkamp, D. E., Van Eyk, J. E., A rapid, econom-ical, and reproducible method for human serum delipida-tion and albumin and IgG removal for proteomic analysis.Methods Mol. Biol.2006,357, 365–371.
  • [117] Marshall, J., Kupchak, P., Zhu, W., Yantha, J.et al., Proces-sing of serum proteins underlies the mass spectral finger-printing of myocardial infarction.J. Proteome Res.2003,2,361–372.
  • [118] Villanueva, J., Shaffer, D. R., Philip, J., Chapparro, C. A.etal., Differential exoprotease activities confer tumor-specificserum peptidome patterns.J. Clin. Invest.2006,116, 271–284.
  • [119] Hortin, G. L., The MALDI-TOF mass spectrometric view ofthe plasma proteome and peptidome.Clin. Chem.2006,52,1218–1222.
  • [120] Petricoin, E. F., Belluco, C., Araujo, R. P., Liotta, L. A., Theblood peptidome: A higher dimension of information con-tent for cancer biomarker discovery.Nat. Rev. Cancer2006,6, 961–967.
  • [121] Hwang, I. K., Park, S. M., Kim, S. Y., Lee, S. T., A proteomicapproach to identify substrates of matrix metalloprotei-nase-14 in human plasma.Biochim. Biophys. Acta2004,1702, 79–87.
  • [122] Kiernan, U. A., Nedelkov, D., Nelson, R. W., Multiplexesmass spectrometric immunoassay in biomarker research:A novel approach to the determination of a myocardialinfarct.J. Proteome Res.2006,5, 2928–2934.
  • [123] Karlsson, H., Leanderson, P., Tagesson, C., Lindahl, M.,Lipoproteomics I: Mapping of proteins in low-density lipo-protein using two-dimensional gel electrophoresis andmass spectrometry.Proteomics2005,5, 551–565.
  • [124] Karlsson, H., Leanderson, P., Tagesson, C., Lindahl, M.,Lipoproteomics II: Mapping of proteins in high-densitylipoprotein using two-dimensional gel electrophoresis andmass spectrometry.Proteomics2005,5, 1432–1445.
  • [125] Rezaee, F., Casetta, B., Levels, J. H. M., Speijer, D, Meijers,J. C. M., Proteomic analysis of high-density lipoprotein.Proteomics2006,6, 721–730.
  • [126] Karlsson, H., Lindquist, H., Tagesson, C., Lindahl, M., Char-acterization of apolipoprotein M isoforms in low-densitylipoprotein.J. Proteome Res.2006,6, 2685–2690.
  • [127] Mancone, C., Amicone, L., Fimia, G. M., Bravo, E.et al.,Proteomic analysis of human very low density lipoproteinsby two-dimensional gel electrophoresis and MALDI-TOF/TOF.Proteomics2007,7, 143–154.
  • [128] Heller, M., Schlappritzi, A., Stalder, D., Nuoffer, J. M.et al.,Compositional protein analysis of high-density lipoproteinin hypercolesterolemia by shotgun LC-MS/MS and prob-abilistic peptide score.Mol. Cell. Proteomics2007,6, 1059–1072.
  • [129] Vaisar, T., Pennathur, S., Green, P. S., Gharib, S. A.et al.,Shotgun proteomics implicates protease inhibition andcomplement activation in the antiinflammatory propertiesof HDL.J. Clin. Invest.2007,117, 746–756.
  • [130] Osterud, B., Bjorklid, E., Role of monocytes in atherogen-esis.Physiol. Rev.2003,83, 1089–10112.
  • [131] Wasserman, E., Shipley, N. M., Atherothrombosis in acutecoronary syndromes: Mechanisms, markers and mediatorsof vulnerability.Mount Sin. J. Med.2006,73, 431–439.
  • [132] Llodrá, J., Angeli, V., Liu, J., Trogan, E.et al., Emigration ofmonocyte-derived cells from atherosclerotic lesions char-acterizes regressive, but not progressive, plaques.Proc.Natl. Acad. Sci.2004,101, 11779–11784.
  • [133] Barderas, M. G., Gallego-Delgado, J., Mas, S., Durán, M. C.et al., Isolation of circulating human monocytes with highpurity for proteomic analysis.Proteomics2004,4, 432–437.
  • [134] Barderas, M. G., Darde, V. M., Duran, M. C., Egido, J.,Vivanco, F., Characterization of circulating human mono-cytes by proteomic analysis.Methods Mol. Biol.2006,357,319–328.
  • [135] Barderas, M. G., Tuñón, J., Dardé, V. M., De la Cuesta, F.etal., Circulating human monocytes in the acute coronarysyndromes express a characteristic profile.J. Proteom.Res.2007,2, 876–886.
  • [136] Hakala, J. K, Oksjoki, R., Laine, P., Du, H.et al., Lysosomalenzymes are released from cultured human macrophages,hydrolyze LDLin vitro, and are present extracellularly inhuman atherosclerotic lesions.Arterioscler. Thromb. Vasc.Biol.2003,23, 1430–1436
  • [137] Marcus, K., Meyer, H. E., Two dimensional polyacrylamidegel electrophoresis for platelet proteomics.Methods Mol.Biol.2004,273, 421–434.
  • [138] O’Neil, E. E., Brock, C. J., von Kriegsheim, A. F., Pearce, A.C.et al., Towards complete analysis of platelet proteome.Proteomics2002,2, 288–305.
  • [139] Garcia, A., Zitzmann, N., Watson, S. P., Analysing theplatelet proteome.Semin. Thromb. Hemost.2004,30, 485–489.
  • [140] McRedmond, J. P., Park, S. D., Reilly, D. F., Coppinger, J.etal., Integration of proteomics and genomics in platelets. Aprofile of platelet proteins and platelet specific genes.Mol.Cell. Proteomics2004,3, 133–144.
  • [141] Martens, L., Van Damme, P., Van Dame, J., Staes, A.et al.,The human platelet proteome mapped by peptide-centricproteomics: A functional protein profile.Proteomics2005,5, 3193–3204.
  • [142] Zellner, M., Winkler, W., Hayden, H., Diestinger, M.et al.,Quantitative validation of different protein precipitationmethods in proteome analysis of blood platelet.Electro-phoresis2005,26, 2481–2489.
  • [143] Gevaert, K., Eggermont, L., Demol, H., Vandekerckhove, J.,A fast and convenient MALDI-MS based proteomicapproach: Identification of components scaffolded by theactin cytoskeleton of activated human thrombocytes.J.Biotechnol.2000,78, 259–269.
  • [144] Garcia, A., Prabhakar, S., Brock, C. J., Pearce, A. C., Dwek,R. A., Extensive analysis of the human platelet proteome bytwo-dimensional gel electrophoresis and mass spectrom-etry.Proteomics2004,4, 656–658.
  • [145] Immler, D., Gremm, D., Kirsch, D., Spengler, B.et al., Iden-tification of phosphorylated proteins from thrombin-acti-vated human platelets isolated by two-dimensional gelelectrophoresis by electrospray ionization tandem massspectrometry (ESI-MS/MS) and liquid chromatographyelectrospray ionization mass spectrometry (LC-ESI-MS).Electrophoresis1998,19, 1015–1023.
  • [146] Maguire, P. B., Wynne, K. J., Harney, D. F., O’Donoghue, N.M.et al., Identification of the phosphotyrosine proteomefrom thrombin activated platelets.Proteomics2002,2, 642–648.
  • [147] Foy, M., Harney, D. F., Wynne, K., Maguire, P. B., Enrich-ment of phosphotyrosine proteome of human platelets byimmunoprecipitation.Methods Mol. Biol.2007,357, 313–318.
  • [148] Marcus, K., Moebius, J., Meyer, H. E., Differential analysisof phosphorylated proteins in resting and thrombin stimu-lated human platelets.Anal. Bioanal. Chem.2003,376, 973–993.
  • [149] Zahedi, R. P., Begonja, A. J., Gambarayan, S., Sickman, A.,Phosphoproteomics of human platelets: A request fornovel activation pathways.Biochim. Biophys. Acta2006,1764, 1963–1976.
  • [150] Senis, Y. A., Tomlinson, M. G., Garcia, A., Dumen, S.et al.,A comprehensive proteomics and genomics analysisreveals novel transmembrane proteins in human plateletsand mouse megakaryocytes including G6b, a novel ITMprotein.Moll. Cell. Proteomics2007,6, 548–564.
  • [151] Gevaert, K., Goethals, M., Martens, L., Van Damme, J.et al.,Exploring proteomes and analyzing protein processing bymass spectrometric identification of sorted N-terminalpeptides.Nat. Biotechnol.2003,21, 566–569.
  • [152] Garcia, A., Prabhakar, S., Hughan, S., Anderson, T. W.et al.,Differential proteome analysis of TRAP-activated platelets:Involvement of Dok-2 and phosphorylation of RGS pro-teins.Blood2004,103, 2088–2095.
  • [153] Coppinger, J. A., Cagney, G., Toomey, S., Kislinger, T.et al.,Characterization of the proteins released from activatedplatelets leads to localization of novel platelet proteins inhuman atherosclerotic lesions.Blood2004,103, 2096–2104.
  • [154] Coppinger, J., Fitzgerald, D. J., Maguire, P. B., Isolation ofthe platelet releasate.Methods Mol. Biol.2006,357, 307–311.
  • [155] Macaulay, I. C., Carr, P., Gusnanto, A., Ouwehand, W. H.etal., Platelet genomics and proteomics in human health anddisease.J. Clin. Invest.2005,115, 3370–3377.
  • [156] Dittrich, M., Birschmann, I., Stuhfelder, C., Sickmann, A.etal., Understanding platelets. Lessons from proteomics,genomics and promises from network analysis.Thromb.Haemost.2005,94, 916–925.
  • [157] Maguire, P. B., Fitzgerald, D. J., Platelet proteomics.J.Thromb. Haemost.2003,1, 1593–1601.
  • [158] Moebius, J., Zahedi, R. P., Lewandroski, U., Berger, C.et al.,The human platelet membrane proteome reveals severalnew potential membrane proteins.Mol. Cell. Proteomics2005,4, 1754–1761.
  • [159] Lewandroski, U., Moebius, J., Walter, U., Sickmann, A.,Elucidation of N-glycosylation sites on human plateletproteins. A glycoproteomic approach.Mol. Cell. Proteom-ics2006,5, 226–233.
  • [160] Weyrich, A. S., Zimmerma, G. A., Propelling the plateletproteome.Blood2004,103, 1979.
  • [161] Garcia, A., Watson, S. P., Dwek, R. A., Zitzmann, N., Apply-ing proteomics technology to platelet research.MassSpectrom. Rev.2005,24, 918–930.
  • [162] Maguire, P. B., Moran, N., Cagney, G., Fitzgerald, D., Appli-cation of proteomics to study of platelet regulatory mech-anisms.Trends Cardiovasc. Med.2004,14, 207–220.
  • [163] Garcia, A., Watson, S. P., Dwek, R. A., Zitzmann, N., Apply-ing proteomics technology to platelet research.MassSpectrom. Rev.2005,24, 918–930.
  • [164] Gnatenko, D. V., Perrota, P. L., Bahou, W. F., Proteomicapproaches to dissect platelet function: Half the story.Blood2006,108, 3983–3991.
  • [165] Wang, X., Zhao, H., Anderson, R., Proteomics and leuko-cytes: An approach to understanding potential molecularmechanism of inflammatory responses.J. Proteome Res.2004,3, 921–929.
  • [166] Madjid, M., Awan, I., Willerson, J. T., Casscells, S. W., Leu-kocyte count and coronary heart disease: Implications forrisk assessment.J. Am. Coll. Cardiol.2004,44, 1945–1956.
  • [167] Naruko, T., Ueda, M., Haze, K., Van der Wal, A. C.et al.,Neutrophil infiltration of culprit lesions in acute coronarysyndromes.Circulation2002,106, 2894–2900.
  • [168] Fessler, M. B., Malcolm, K. C., Duncan, M. W., Worthen, G.S., A genomic and proteomic analysis of activation of thehuman neutrophil by lipopolysaccharide and its mediationby p38 mitogen-activated protein kinase.J. Biol. Chem.2002,277, 31291–302.
  • ]169] Boussac, M., Garin, J., Calcium-dependent secretion inhuman neutrophils: A proteomic approach.Electrophore-sis2000,21, 665–672.
  • [170] Lominadze, G., Powell, D. W., Luerman, G. C., Link, A. J.etal., Proteomic analysis of human neutrophil granules.Mol.Cell. Proteomics2005,4, 1503–1521.
  • [171] Lominadze, G., Ward, R. A., Klein, J. B., McLeisch, K. R.,Proteomic analysis of human neutrophils.Methods Mol.Biol.2006,332, 343–356.
  • [172] Kakhniashvili, D. G., Bulla, L. A., Goodman, S. R., The hu-man erythrocyte proteome. Analysis by ion trap massspectrometry.Mol. Cell. Proteomics2004,3, 501–509.
  • [173] Low, T. Y., Seow, T. K., Chung, M. C. M., Separation of hu-man erythrocyte membrane associated proteins with onedimensional and two-dimensional gel electrophoresis fol-lowed by identification with matrix assisted laser desorp-tion/ionisation time of flight mass spectrometry.Proteom-ics2002,2, 1229–1239.
  • [174] Luche, S., Santoni, V., Rabilloud, T., Evaluation of nonioniczwitterionic detergent as membrane protein solubilizers intwo-dimensional electrophoresis.Proteomics2003,3, 249–253.
  • [175] Bruschi, M., Seppi, C., Arena, S.et al., Proteomic analysisof erythrocyte membranes by soft immobiline gels com-bined with differential protein extraction.J. Proteome Res.2005,4, 1304–1309.
  • [176] Tyan, Y. C., Jong, S. B., Liao, P. C., Yang, M. H.et al., Prote-omic profiling of erythrocyte proteins by proteolytic diges-tion chip and identification using two-dimensional electro-spray ionisation tandem mass spectrometry.J. ProteomeRes.2005,4, 748–757.
  • [177] Kakhniashvili, D. G., Griko, N. B., Bulla, L. A., Goodman, S.R., The proteomics of sickle cell disease: Profiling of eryth-rocyte membrane proteins by 2D-DIGE and tandem massspectrometry.Exp. Biol. Med.2005,230, 787–792.
  • [178] Pasini, E. M., Kirkegaard, M., Mortensen, P., Lutz, H. U.etal., In-depth analysis of the membrane and cytosolic pro-teome of red blood cells.Blood2006,108, 791–801.
  • [179] Queloz, P. A., Thadikkaran, L., Crettaz, D., Rossier, J. S.etal., Proteomics and transfusion medicine: Future perspec-tives.Proteomics2006,6, 5605–5614.