El polimorfismo K153R del gen de la miostatina como gen candidato en la longevidad extrema de centenarias españolas

  1. Nuria Garatachea 1
  2. G. Rodríguez-Romo 2
  3. A. Santos-Lozano 3
  4. C. Santiago-Dorrego 4
  5. T. Yvert 4
  6. C. Fiuza-Luce 5
  7. A. Lucia 5
  1. 1 Universidad de Zaragoza, España
  2. 2 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  3. 3 Universidad de León, España
  4. 4 Universidad Europea de Madrid, España
  5. 5 Hospital Universitario 12 de Octubre, Madrid, España
Revista:
Kronos: revista universitaria de la actividad física y el deporte

ISSN: 1579-5225

Año de publicación: 2014

Volumen: 13

Número: 2

Tipo: Artículo

Otras publicaciones en: Kronos: revista universitaria de la actividad física y el deporte

Resumen

El gen de la miostatina (MSTN) es uno de los genes candidatos que podría influir en la longevidad extrema, debido a su papel en la modulación de masa muscular y sarcopenia, además de su papel en la inhibición de la principal vía de señalización de nutrientes relacionada con la longevidad, mTOR (del inglés, ‘mammalian target-of-rapamycin’). Comparamos la distribución alélica/genotípica de las variantes exónicas de la MSTN K153R (rs1805086), E164K (rs35781413), I225T y P198A, en centenarias (casos, n=132; rango edad: 100-107) y mujeres jóvenes (controles, n=167, < 50 años). La frecuencia de la variante alélica R y de los portadores de este la misma (genotipos KR o RR) fue significativamente superior en centenarias (6.8% y 12.1%) que en controles (1.5% y 3.8%) (p=0.0008 y p=0.0022 respectivamente). La razón de verosimilitud (‘odds ratio’, abreviado ‘OR’) de ser un centenaria si el sujeto tiene un alelo-R fue 4.47 (con un intervalo de confianza del 95% (CI): 1.59-12.54; p=0.004), comparado con el grupo control. Aunque son necesarias nuevas investigaciones, el alelo variante R del polimorfismo MSTN K153R podría ser uno de los contribuidores genéticos asociados con excepcional longevidad.

Referencias bibliográficas

  • 1. Baumann, A. P., Ibebunjo, C., Grasser, W. A., & Paralkar, V. M. (2003). Myostatin expression in age and denervation-induced skeletal muscle atrophy. Journal of musculoskeletal & neuronal interactions, 3(1), 8-16.
  • 2. Bjedov, I., & Partridge, L. (2011). A longer and healthier life with TOR down-regulation: genetics and drugs. Biochemical Society transactions, 39(2), 460-465. doi: 10.1042/BST0390460
  • 3. Carlson, C. J., Booth, F. W., & Gordon, S. E. (1999). Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. The American journal of physiology, 277(2 Pt 2), R601-606.
  • 4. Constantin, D., McCullough, J., Mahajan, R. P., & Greenhaff, P. L. (2011). Novel events in the molecular regulation of muscle mass in critically ill patients. The Journal of physiology, 589(Pt 15), 3883-3895. doi: 10.1113/jphysiol.2011.206193
  • 5. Corsi, A. M., Ferrucci, L., Gozzini, A., Tanini, A., & Brandi, M. L. (2002). Myostatin polymorphisms and age-related sarcopenia in the Italian population. J Am Geriatr Soc, 50(8), 1463. doi: jgs50376 [pii]
  • 6. Chanock, S. J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D. J., Thomas, G., . . . Collins, F. S. (2007). Replicating genotype-phenotype associations. Nature, 447(7145), 655-660. doi: 447655a [pii] 10.1038/447655a
  • 7. Dasarathy, S., Dodig, M., Muc, S. M., Kalhan, S. C., & McCullough, A. J. (2004). Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. American journal of physiology. Gastrointestinal and liver physiology, 287(6), G1124-1130. doi: 10.1152/ajpgi.00202.2004
  • 8. Fenton, T. R., & Gout, I. T. (2011). Functions and regulation of the 70kDa ribosomal S6 kinases. The international journal of biochemistry & cell biology, 43(1), 47-59. doi: 10.1016/j.biocel.2010.09.018
  • 9. Ferrell, R. E., Conte, V., Lawrence, E. C., Roth, S. M., Hagberg, J. M., & Hurley, B. F. (1999). Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics, 62(2), 203-207. doi: 10.1006/geno.1999.5984 S0888-7543(99)95984-0 [pii]
  • 10. Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span--from yeast to humans. Science, 328(5976), 321-326. doi: 10.1126/science.1172539
  • 11. Garatachea, N., & Lucia, A. (2011). Genes and the ageing muscle: a review on genetic association studies. Age (Dordr). doi: 10.1007/s11357-011-9327-0
  • 12. Gonzalez-Cadavid, N. F., Taylor, W. E., Yarasheski, K., Sinha-Hikim, I., Ma, K., Ezzat, S., Bhasin, S. (1998). Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14938-14943.
  • 13. Gonzalez-Freire, M., Rodriguez-Romo, G., Santiago, C., Bustamante-Ara, N., Yvert, T., Gomez-Gallego, F., . . . Lucia, A. (2010). The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan. Age (Dordr), 32(3), 405-409. doi: 10.1007/s11357-010-9139-7
  • 14. Huygens, W., Thomis, M. A., Peeters, M. W., Aerssens, J., Janssen, R., Vlietinck, R. F., & Beunen, G. (2004). Linkage of myostatin pathway genes with knee strength in humans. Physiol Genomics, 17(3), 264-270. doi: 10.1152/physiolgenomics.00224.2003 00224.2003 [pii]
  • 15. Jiang, M. S., Liang, L. F., Wang, S., Ratovitski, T., Holmstrom, J., Barker, C., & Stotish, R. (2004). Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophys Res Commun, 315(3), 525-531. doi: 10.1016/j.bbrc.2004.01.085 S0006291X04001391 [pii]
  • 16. Kawada, S., Tachi, C., & Ishii, N. (2001). Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. Journal of muscle research and cell motility, 22(8), 627-633.
  • 17. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504-512. doi: 10.1038/nature08980
  • 18. Krivickas, L. S., Walsh, R., & Amato, A. A. (2009). Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve, 39(1), 3-9. doi: 10.1002/mus.21200
  • 19. Lawlor, M. W., Read, B. P., Edelstein, R., Yang, N., Pierson, C. R., Stein, M. J., . . . Beggs, A. H. (2011). Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. The American journal of pathology, 178(2), 784-793. doi: 10.1016/j.ajpath.2010.10.035
  • 20. Lee, S. J., & McPherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A, 98(16), 9306-9311. doi: 10.1073/pnas.151270098 151270098 [pii]
  • 21. Lee, S. J., Reed, L. A., Davies, M. V., Girgenrath, S., Goad, M. E., Tomkinson, K. N., . . . Wolfman, N. M. (2005). Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18117-18122. doi: 10.1073/pnas.0505996102
  • 22. Lipina, C., Kendall, H., McPherron, A. C., Taylor, P. M., & Hundal, H. S. (2010). Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS letters, 584(11), 2403-2408. doi: 10.1016/j.febslet.2010.04.039
  • 23. Martin, G. M., Bergman, A., & Barzilai, N. (2007). Genetic determinants of human health span and life span: progress and new opportunities. PLoS genetics, 3(7), e125. doi: 10.1371/journal.pgen.0030125
  • 24. McPherron, A. C., Lawler, A. M., & Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387(6628), 83-90. doi: 10.1038/387083a0
  • 25. McPherron, A. C., & Lee, S. J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A, 94(23), 12457-12461.
  • 26. Metter, E. J., Talbot, L. A., Schrager, M., & Conwit, R. A. (2004). Arm-cranking muscle power and arm isometric muscle strength are independent predictors of all-cause mortality in men. Journal of applied physiology, 96(2), 814-821. doi: 10.1152/japplphysiol.00370.2003
  • 27. Morissette, M. R., Stricker, J. C., Rosenberg, M. A., Buranasombati, C., Levitan, E. B., Mittleman, M. A., & Rosenzweig, A. (2009). Effects of myostatin deletion in aging mice. Aging cell, 8(5), 573-583. doi: 10.1111/j.1474-9726.2009.00508.x
  • 28. Morrison, B. M., Lachey, J. L., Warsing, L. C., Ting, B. L., Pullen, A. E., Underwood, K. W., . . . Wagner, K. R. (2009). A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Experimental neurology, 217(2), 258-268. doi: 10.1016/j.expneurol.2009.02.017
  • 29. Murphy, K. T., Ryall, J. G., Snell, S. M., Nair, L., Koopman, R., Krasney, P. A., . . . Lynch, G. S. (2010). Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. The American journal of pathology, 176(5), 2425-2434. doi: 10.2353/ajpath.2010.090932
  • 30. Rose, F. F., Jr., Mattis, V. B., Rindt, H., & Lorson, C. L. (2009). Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Human molecular genetics, 18(6), 997-1005. doi: 10.1093/hmg/ddn426
  • 31. Sengupta, S., Peterson, T. R., & Sabatini, D. M. (2010). Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular cell, 40(2), 310-322. doi: 10.1016/j.molcel.2010.09.026
  • 32. Trendelenburg, A. U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., & Glass, D. J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. American journal of physiology. Cell physiology, 296(6), C1258-1270. doi: 10.1152/ajpcell.00105.2009
  • 33. Tsuchida, K. (2008). Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice. Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology / edited by the Gaetano Conte Academy for the study of striated muscle diseases, 27, 14-18.
  • 34. Wagner, K. R., Fleckenstein, J. L., Amato, A. A., Barohn, R. J., Bushby, K., Escolar, D. M., Mendell, J. R. (2008). A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol, 63(5), 561-571. doi: 10.1002/ana.21338
  • 35. Yarasheski, K. E., Bhasin, S., Sinha-Hikim, I., Pak-Loduca, J., & Gonzalez-Cadavid, N. F. (2002). Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting. J Nutr Health Aging, 6(5), 343-348.