32 years of Artificial Intelligence in aviationDisclosing past success, unlocking next challenges

  1. Darío Pérez-Campuzano 1
  2. Luis Rubio Andrada 1
  3. Patricio Morcillo Ortega 1
  4. Antonio López-Lázaro 2
  1. 1 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

  2. 2 Euroairlines
Journal:
ESIC Digital Economy & Innovation Journal

ISSN: 2792-8721

Year of publication: 2021

Volume: 1

Issue: 1

Pages: 138-157

Type: Article

DOI: 10.55234/EDEIJ-1-1-007 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: ESIC Digital Economy & Innovation Journal

Abstract

Artificial Intelligence (AI) and its related disciplines (Machine Learning, Data Mining, Big Data…) offer opportunities whose practical implementation pose complex challenges. Their fast evolution evidences potential but has caused a gap between academia and certain areas of the industry – which seem to lack the required agility to implement such technologies. This study aims to suggest some recommendations and a roadmap aligning both communities through a comprehensive quantitative meta-analysis and visualization of the existing literature. Although four modes of transport are initially compared, the focus is placed on AI within air transport (273 works since 1987) and its relationship with organizational areas. Results show that the most popular topics are Machine Learning and neural networks. Nevertheless, as many documents only mention one AI-related term, visibility is hindered in specific-keyword searches. Operations seem to be thoroughly explored while there is room for research in Strategy and Resourcing.

Bibliographic References

  • Akerkar, R. (2014). Analytics on big aviation data: Turning data into insights. International Journal of Computer Science and Applications, 11(3), 116-127. Retrieved from http://www.tmrfindia.org/ijcsa/v11i35.pdf
  • Akpinar, M. T., & Karabacak, M. E. (2017). Data mining applications in civil aviation sector: State-of-art review. Turkey: Retrieved from https://www.semanticscholar.org/paper/Data-mining-applications-in-civil-aviation-sector-%3A-Akpinar/3a9a112832e72ad6decf2e981c28865deb0f2601
  • Alligier, R., Gianazza, D. & Durand. N. (2015). Machine learning and mass estimation methods for ground-based aircraft climb prediction doi: 10.1109/TITS.2015.2437452
  • Barros, C. P., & Wanke, P. (2015). An analysis of african airlines efficiency with two-stage TOPSIS and neural networks. Journal of Air Transport Management, 44-45, 90-102. doi: https://doi.org/10.1016/j.jairtraman.2015.03.002
  • Beecroft, M. (2019). The future security of travel by public transport: A review of evidence. Research in Transportation Business and Management, 32, UNSP 100388. doi: 10.1016/j.rtbm.2019.100388
  • Bueno, E., & Morcillo, P. (2017). La innovación empresarial como generadora de ventajas adaptativas para la sostenibilidad. Paper presented at the XIX Congreso Internacional AECA
  • Campos, J. P., & Rubio, L. (2017). Vigilancia tecnológica e inteligencia competitiva: Elementos de apoyo al desarrollo de una cultura de innovación en las organizaciones. el caso ALSA. Economía Industrial, (406), 81-90.
  • Chen, C. (2006). Job satisfaction, organizational commitment, and flight attendants’ turnover intentions: A note. Journal of Air Transport Management, 12(5), 274-276. doi: https://doi.org/10.1016/j.jairtraman.2006.05.001
  • Chen, P., Dang, Y., Liang, R., Zhu, W., & He, X. (2018). Real-time object tracking on a drone with multi-inertial sensing data doi: 10.1109/TITS.2017.2750091
  • Crowston, K., & Myers, M. D. (2004). Information technology and the transformation of industries: Three research perspectives. The Journal of Strategic Information Systems, 13(1), 5-28. doi: doi.org/10.1016/j.jsis.2004.02.001
  • Cui, Q., & Li, Y. (2018). CNG2020 strategy and airline efficiency: A network epsilon-based measure with managerial disposability. Null, 12(5), 313-323. doi: 10.1080/15568318.2017.1353187
  • De Oña, R., Eboli, L., & Mazzulla, G. (2014). Key factors affecting rail service quality in the northern italy: A decision tree approach. Null, 29(1), 75-83. doi: 10.3846/16484142.2014.898216
  • Dey, A. (2016). Machine learning algorithms: A review. International Journal of Computer Science and Information Technologies, 7(3), 1174-1179.
  • Goodall, N. J. (2014). Ethical decision making during automated vehicle crashes. Transportation Research Record, 2424(1), 58-65. doi: 10.3141/2424-07
  • Gosling, G. D. (1987). Identification of artificial-intelligence applications in air-traffic-control. Transportation Research Part A-Policy and Practice, 21(1), 27-38. doi: 10.1016/0191-2607(87)90021-5
  • Hurter, C., Conversy, S., Gianazza, D., & Telea, A. C. (2014). Interactive image-based information visualization for aircraft trajectory analysis. Transportation Research Part C: Emerging Technologies, 47, 207-227. doi: https://doi.org/10.1016/j.trc.2014.03.005
  • Khan, W. A., Chung, S., Ma, H., Liu, S. Q., & Chan, C. Y. (2019). A novel self-organizing constructive neural network for estimating aircraft trip fuel consumption. Transportation Research Part E: Logistics and Transportation Review, 132, 72-96. doi: https://doi.org/10.1016/j.tre.2019.10.005
  • Li, L., Hansman, R. J., Palacios, R., & Welsch, R. (2016). Anomaly detection via a gaussian mixture model for flight operation and safety monitoring. Transportation Research Part C: Emerging Technologies, 64, 45-57. doi: https://doi.org/10.1016/j.trc.2016.01.007
  • Lin, J., Hu, Z., Zhang, J., & Yu, F. (2016). A natural-language-based approach to intelligent data retrieval and representation for cloud BIM. Computer-Aided Civil and Infrastructure Engineering, 31(1), 18-33. doi: https://doi.org/10.1111/mice.12151
  • López-Lázaro, A., Pérez-Campuzano, D., Benito, A., & Alonso, G. (2018). Analyzing carbon neutral growth and biofuel economic impact for 2017–2025: A case study based on spanish carriers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, doi: 10.1177/0954410018768610
  • Lynch, J. J. (1984). Airline organization in the 1980s - an industry report on strategies and structures for coping with change. Hampshire, England: Macmillan Publishers Ltd. Retrieved from https://www.palgrave.com/gp/book/9780333382493
  • Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: Algorithms and applications Crc Press.
  • Orlikowski, W. J. & Barley, S. R. (2001). Technology and institutions: What can research on information technology and research on organizations learn from each other? Mis Q., 25(2), 145-165. doi: 10.2307/3250927
  • Pérez-Campuzano, D., Gómez-de-las-Heras, E., Gallego-Castillo, C., & Cuerva, A. (2018). Modelling damage equivalent loads in wind turbines from general operational signals: Exploration of relevant input selection methods using aeroelastic simulations. Wind Energy, 21(6), 441-459. doi: 10.1002/we.2171
  • Pérez-Campuzano, D., Morcillo Ortega, P., Rubio Andrada, L., & López-Lázaro, A. (2019) Artificial intelligence potential within organizations: Airline strategy. Paper presented at the XX AECA International Congress, Retrieved from https://xxcongreso.aeca.es/wp-content/uploads/2019/09/36g.pdf
  • Pérez–Rodríguez, J. V., Pérez–Sánchez, J. M., & Gómez–Déniz, E. (2017). Modelling the asymmetric probabilistic delay of aircraft arrival. Journal of Air Transport Management, 62, 90-98. doi: https://doi.org/10.1016/j.jairtraman.2017.03.001
  • Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and competitors. (). Rochester, NY: Retrieved from https://papers.ssrn.com/abstract=1496175
  • Ramón, A. B., Moreno, L., & Perles, J. F. (2011). Growth and internationalisation strategies in the airline industry. Journal of Air Transport Management, 17(2), 110-115. doi: http://doi.org/10.1016/j.jairtraman.2010.11.002
  • Rehman, S. A., Qianli, D., Song Bo, W., Zaman, K., & Zhang, Y. (2017). Travel and tourism competitiveness index: The impact of air transportation, railways transportation, travel and transport services on international inbound and outbound tourism. Journal of Air Transport Management, 58, 125-134. doi: https://doi.org/10.1016/j.jairtraman.2016.10.006
  • Rengaraju, V. R., & Arasan, V. T. (1992). Modeling for air-travel demand. Journal of Transportation Engineering-Asce, 118(3), 371-380. doi: 10.1061/(ASCE)0733-947X(1992)118:3(371)
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach Malaysia; Pearson Education Limited,.
  • Ryerson, M. S., & Kim, H. (2013). Integrating airline operational practices into passenger airline hub definition. Journal of Transport Geography, 31, 84-93. doi: https://doi.org/10.1016/j.jtrangeo.2013.05.013
  • Siddiqui, C., Abdel-Aty, M., & Huang, H. (2012). Aggregate nonparametric safety analysis of traffic zones. Accident Analysis & Prevention, 45, 317-325. doi: https://doi.org/10.1016/j.aap.2011.07.019
  • Sportillo D., Paljic A., & Ojeda. L. (2019). On-road evaluation of autonomous driving training. Paper presented at the - 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 182-190. doi: 10.1109/HRI.2019.8673277
  • Suzuki, Y. (2000). The relationship between on-time performance and airline market share: A new approach. Transportation Research Part E: Logistics and Transportation Review, 36(2), 139-154. doi: https://doi.org/10.1016/S1366-5545(99)00026-5
  • Thanasupsin, K., Chaichana, S., & Pliankarom, S. (2010). Factors influencing mode selections of low-cost carriers and a full-service airline in thailand. Transportation Journal, 49(1), 35-47. Retrieved from https://www.jstor.org/stable/40904820
  • Wang, Z., Liang, M., & Delahaye, D. (2018). A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation Research Part C-Emerging Technologies, 95, 280-294. doi: 10.1016/j.trc.2018.07.019
  • Wanke, P., & Barros, C. P. (2017). Efficiency thresholds and cost structure in senegal airports. Journal of Air Transport Management, 58, 100-112. doi: https://doi.org/10.1016/j.jairtraman.2016.10.005
  • Williams, J. K., Steiner, M., Ahijevych, D., & Dettling, S. (2008). Combining observations and model data for short-term storm forecasting. Paper presented at the 7088 Retrieved from https://doi.org/10.1117/12.795737
  • Wong, J., & Chung, P. (2007). Managing valuable taiwanese airline passengers using knowledge discovery in database techniques. Journal of Air Transport Management, 13(6), 362-370. doi: 10.1016/j.jairtraman.2007.07.001