QUIJOTE scientific results – IV. A northern sky survey in intensity and polarization at 10–20 GHz with the multifrequency instrument
- Rubiño-Martín, J. A. 56
- Guidi, F. 567
- Génova-Santos, R. T. 56
- Harper, S. E. 4
- Herranz, D. 3
- Hoyland, R. J. 56
- Lasenby, A. N. 12
- Poidevin, F. 56
- Rebolo, R. 568
- Ruiz-Granados, B. 5616
- Vansyngel, F. 56
- Vielva, P. 3
- Watson, R. A. 4
- Artal, E. 9
- Ashdown, M. 12
- Barreiro, R. B. 3
- Bilbao-Ahedo, J. D. 317
- Casas, F. J. 3
- Casaponsa, B. 3
- Cepeda-Arroita, R. 4
- de la Hoz, E. 317
- Dickinson, C. 4
- Fernández-Cobos, R. 312
- Fernández-Torreiro, M. 56
- González-González, R. 56
- Hernández-Monteagudo, C. 56
- López-Caniego, M. 1415
- López-Caraballo, C. 56
- Martínez-González, E. 3
- Peel, M. W. 56
- Peláez-Santos, A. E. 56
- Perrott, Y. 113
- Piccirillo, L. 4
- Razavi-Ghods, N. 1
- Scott, P. 1
- Titterington, D. 1
- Tramonte, D. 561011
- Vignaga., R. 56
- Erakutsi egile guztiak +
- 1 Astrophysics Group, Cavendish Laboratory, University of Cambridge , J J Thomson Avenue, Cambridge CB3 0HE, UK
- 2 Kavli Institute for Cosmology, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK
- 3 Instituto de Física de Cantabria (IFCA) , CSIC-Univ. de Cantabria, Avda. los Castros, s/n, E-39005 Santander, Spain
- 4 Jodrell Bank Centre for Astrophysics, Alan Turing Building, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester , Oxford Road, Manchester M13 9PL, Manchester, UK
- 5 Instituto de Astrofísica de Canarias , Santa Cruz de Tenerife, E-38205 La Laguna, Spain
- 6 Departamento de Astrofísica, Universidad de La Laguna , Santa Cruz de Tenerife, E-38206 La Laguna, Spain
- 7 Institut d’Astrophysique de Paris , UMR 7095, CNRS & Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France
- 8 Consejo Superior de Investigaciones Científicas , E-28006 Madrid, Spain
- 9 Departamento de Ingenieria de COMunicaciones (DICOM), Laboratorios de I + D de Telecomunicaciones , Plaza de la Ciencia s/n, E-39005 Santander, Spain
- 10 Purple Mountain Observatory , CAS, No. 10 Yuanhua Road, Qixia District, Nanjing 210034, China
- 11 NAOC-UKZN Computational Astrophysics Center (NUCAC), University of Kwazulu-Natal , Durban 4000, South Africa
- 12 Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria , Avda. los Castros, s/n, E-39005 Santander, Spain
- 13 School of Chemical and Physical Sciences, Victoria University of Wellington , PO Box 600, Wellington 6140, New Zealand
- 14 Aurora Technology for the European Space Agency (ESA), European Space Astronomy Centre (ESAC) , Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain
- 15 Universidad Europea de Madrid , E-28670, Madrid, Spain
- 16 Departamento de Física, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales , Edif. C2. Planta Baja, E-14071 Córdoba, Spain
- 17 Departamento de Física Moderna, Universidad de Cantabria , Avda. de los Castros s/n, E-39005 Santander, Spain
ISSN: 0035-8711, 1365-2966
Argitalpen urtea: 2023
Alea: 519
Zenbakia: 3
Orrialdeak: 3383-3431
Mota: Artikulua
Beste argitalpen batzuk: Monthly Notices of the Royal Astronomical Society
Laburpena
We present QUIJOTE intensity and polarization maps in four frequency bands centred around 11, 13, 17, and 19 GHz, and covering approximately 29 000 deg2, including most of the northern sky region. These maps result from 9000 h of observations taken between May 2013 and June 2018 with the first QUIJOTE multifrequency instrument (MFI), and have angular resolutions of around 1°, and sensitivities in polarization within the range 35–40 µK per 1° beam, being a factor ∼2–4 worse in intensity. We discuss the data processing pipeline employed, and the basic characteristics of the maps in terms of real space statistics and angular power spectra. A number of validation tests have been applied to characterize the accuracy of the calibration and the residual level of systematic effects, finding a conservative overall calibration uncertainty of 5 per cent. We also discuss flux densities for four bright celestial sources (Tau A, Cas A, Cyg A, and 3C274), which are often used as calibrators at microwave frequencies. The polarization signal in our maps is dominated by synchrotron emission. The distribution of spectral index values between the 11 GHz and WMAP 23 GHz map peaks at β = −3.09 with a standard deviation of 0.14. The measured BB/EE ratio at scales of ℓ = 80 is 0.26 ± 0.07 for a Galactic cut |b| > 10°. We find a positive TE correlation for 11 GHz at large angular scales (ℓ ≲ 50), while the EB and TB signals are consistent with zero in the multipole range 30 ≲ ℓ ≲ 150. The maps discussed in this paper are publicly available.
Finantzaketari buruzko informazioa
Finantzatzaile
-
Spanish Ministry of Science and Innovation
- AYA2007-68058-C03-01
- AYA2007-68058-C03-02
- AYA2010-21766-C03-01
- AYA2010-21766-C03-02
- AYA2014-60438-P
- ESP2015-70646-C2-1-R
- AYA2017-84185-P
- ESP2017-83921-C2-1-R
- AYA2017-90675-REDC
-
FEDER
- PGC2018-101814-B-I00
- PID2019-110610RB-C21
- PID2020-120514GB-I00
- IACA13-3E-2336
- IACA15-BE-3707
- EQC2018-004918-P
- ACIISI
-
European Regional Development Fund
- ProID2020010108
-
Horizon 2020
- 687312
-
U.S. Department of Energy
- DE-AC02-05CH11231
-
STFC
- ST/P000649/1
- Spanish State Research Agency
-
AEI
- PID2019-105552RB-C43
-
Chinese Academy of Sciences
- N. 2020PM0042
- ESA
- NASA
Erreferentzia bibliografikoak
- Abazajian, (2022), ApJ, 926, pp. 54, 10.3847/1538-4357/ac1596
- Addamo, (2021), J. Cosmology Astropart. Phys., 2021, pp. 008, 10.1088/1475-7516/2021/08/008
- Ade, (2019), J. Cosmology Astropart. Phys., 2019, pp. 056, 10.1088/1475-7516/2019/02/056
- Ade, (2021), Phys. Rev. Lett., 127, pp. 151301, 10.1103/PhysRevLett.127.151301
- Alonso, (2019), MNRAS, 484, pp. 4127, 10.1093/mnras/stz093
- Anderson, (1995), ApJ, 441, pp. 300, 10.1086/175356
- Aumont, (2010), A&A, 514, pp. A70, 10.1051/0004-6361/200913834
- Baars, (1977), A&A, 500, pp. 135
- Bellotti, (2015)
- Bennett, (2003), ApJS, 148, pp. 97, 10.1086/377252
- Bennett, (2013), ApJS, 208, pp. 20, 10.1088/0067-0049/208/2/20
- Berkhuijsen, (1972), A&AS, 5, pp. 263
- Bietenholz, (1991), ApJ, 368, pp. 231, 10.1086/169686
- Bilbao-Ahedo, (2021), J. Cosmology Astropart. Phys., 2021, pp. 034, 10.1088/1475-7516/2021/07/034
- Boland, (1966), ApJ, 144, pp. 437, 10.1086/148625
- Burn, (1966), MNRAS, 133, pp. 67, 10.1093/mnras/133.1.67
- Carretti, (2019), MNRAS, 489, pp. 2330, 10.1093/mnras/stz806
- Cepeda-Arroita, (2021), MNRAS, 503, pp. 2927, 10.1093/mnras/stab583
- Choi, (2015), J. Cosmology Astropart. Phys., 2015, pp. 020, 10.1088/1475-7516/2015/12/020
- Dahal, (2021), The Planetary Science Journal, 2, pp. 71, 10.3847/PSJ/abedad
- Davies, (1963), Nature, 197, pp. 32, 10.1038/197032a0
- de Belsunce, (2022), MNRAS, pp. 2855, 10.1093/mnras/stac2825
- de la Hoz, (2022), MNRAS, 519, pp. 3504, 10.1093/mnras/stac3020
- de Oliveira-Costa, (1999), ApJ, 527, pp. L9, 10.1086/312384
- de Pater, (2019), Icarus, 322, pp. 168, 10.1016/j.icarus.2018.11.024
- Dickinson, (2018), New A Rev., 80, pp. 1, 10.1016/j.newar.2018.02.001
- Diego-Palazuelos, (2021), J. Cosmol. Astropart. Phys., 2021, pp. 048, 10.1088/1475-7516/2021/03/048
- Dmitrenko, (1970), Radiophys. Quantum Electron., 13, pp. 649, 10.1007/BF01030765
- Draine, (2016), ApJ, 831, pp. 59, 10.3847/0004-637X/831/1/59
- Dunkley, (2009), ApJ, 701, pp. 1804, 10.1088/0004-637X/701/2/1804
- Eriksen, (2008), ApJ, 676, pp. 10, 10.1086/525277
- Fahd, (1992)
- Fernández-Cerezo, (2006), MNRAS, 370, pp. 15, 10.1111/j.1365-2966.2006.10505.x
- Foreman-Mackey, (2013), PASP, 125, pp. 306, 10.1086/670067
- Fuskeland, (2014), ApJ, 790, pp. 104, 10.1088/0004-637X/790/2/104
- Fuskeland, (2021), A&A, 646, pp. A69, 10.1051/0004-6361/202037629
- Gardner, (1966), ARA&A, 4, pp. 245, 10.1146/annurev.aa.04.090166.001333
- Génova-Santos, (2015), MNRAS, 452, pp. 4169, 10.1093/mnras/stv1405
- Génova-Santos, (2017), MNRAS, 464, pp. 4107, 10.1093/mnras/stw2503
- Gibson, (2005), Icarus, 173, pp. 439, 10.1016/j.icarus.2004.06.020
- Gomez, (2010), Proc. SPIE Conf. Ser. Vol. 7733, Ground-based and Airborne Telescopes III, pp. 77330Z, 10.1117/12.857286
- Górski, (2005), ApJ, 622, pp. 759, 10.1086/427976
- Green, (1975), A&A, 44, pp. 187
- Guidi, (2021), MNRAS, 507, pp. 3707, 10.1093/mnras/stab2422
- Guidi, (2022), MNRAS, 519, pp. 3460, 10.1093/mnras/stac3468
- Hafez, (2008), MNRAS, 388, pp. 1775, 10.1111/j.1365-2966.2008.13515.x
- Harper, (2022), MNRAS, 513, pp. 5900, 10.1093/mnras/stac1210
- Harris, (2020), Nature, 585, pp. 357, 10.1038/s41586-020-2649-2
- Haslam, (1982), A&AS, 47, pp. 1
- Hernández-Monteagudo, (2004), MNRAS, 347, pp. 403, 10.1111/j.1365-2966.2004.07205.x
- Herranz, (2022), MNRAS, 519, pp. 3526, 10.1093/mnras/stac3657
- Hobbs, (1968), ApJ, 153, pp. 1001, 10.1086/149727
- Hobbs, (1967), ApJ, 147, pp. 908, 10.1086/149082
- Hobbs, (1967), ApJ, 149, pp. 707, 10.1086/149299
- Hollinger, (1968), ApJ, 151, pp. 771, 10.1086/149477
- Hollinger, (1964), ApJ, 140, pp. 656, 10.1086/147956
- Honda, (2020), Proc. SPIE, 11445, pp. 114457Q
- Hoyland, (2012), Proc. SPIE Conf. Ser. Vol. 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, pp. 845233, 10.1117/12.925349
- Hoyland, (2022), Proc. SPIE Conf. Ser. Vol. 12190, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, pp. 1219033
- Hunter, (2007), Comput. Sci. Engineer., 9, pp. 90, 10.1109/MCSE.2007.55
- Hutschenreuter, (2020), A&A, 633, pp. A150, 10.1051/0004-6361/201935479
- Jarosik, (2003), ApJS, 145, pp. 413, 10.1086/346080
- Johnston, (1969), ApJ, 158, pp. 145, 10.1086/150178
- Jonas, (1998), MNRAS, 297, pp. 977, 10.1046/j.1365-8711.1998.01367.x
- Jones, (2018), MNRAS, 480, pp. 3224, 10.1093/mnras/sty1956
- Kamionkowski, (1997), Phys. Rev. Lett., 78, pp. 2058, 10.1103/PhysRevLett.78.2058
- Karim, (2018), AJ, 155, pp. 129, 10.3847/1538-3881/aaaab2
- Keihänen, (2005), MNRAS, 360, pp. 390, 10.1111/j.1365-2966.2005.09055.x
- Keihänen, (2010), A&A, 510, pp. A57, 10.1051/0004-6361/200912813
- Krachmalnicoff, (2016), A&A, 588, pp. A65, 10.1051/0004-6361/201527678
- Krachmalnicoff, (2018), A&A, 618, pp. A166, 10.1051/0004-6361/201832768
- Kuz’min, (1959), Soviet Ast., 3, pp. 39
- Laing, (1988), Nature, 331, pp. 149, 10.1038/331149a0
- Leahy, (2010), A&A, 520, pp. A8, 10.1051/0004-6361/200912855
- Lewis, (2001), Phys. Rev. D, 65, pp. 023505, 10.1103/PhysRevD.65.023505
- LiteBIRD Collaboration, (2022)
- Martire, (2022), J. Cosmol. Astropart. Phys., 2022, pp. 003, 10.1088/1475-7516/2022/04/003
- Mayer, (1968), ApJ, 151, pp. 53, 10.1086/149418
- Mayer, (1959), AJ, 64, pp. 339, 10.1086/108001
- Mayer, (1962), AJ, 67, pp. 581, 10.1086/108845
- Mayer, (1964), ApJ, 139, pp. 248, 10.1086/147751
- Mezger, (1966), AJ, 71, pp. 864, 10.1086/110018
- Minami, (2019), PTEP, 2019, pp. 083E02, 10.1093/ptep/ptz079
- Miville-Deschênes, (2008), A&A, 490, pp. 1093, 10.1051/0004-6361:200809484
- Morris, (1964), AJ, 69, pp. 641, 10.1086/109340
- Paine, (2019), The am atmospheric model, 10.5281/zenodo.3406483
- Pedregosa, (2011), JMLR, 12, pp. 2825
- Pérez-de-Taoro, (2016), Proc. SPIE Conf. Ser. Vol. 9906, Ground-based and Airborne Telescopes VI, pp. 99061K, 10.1117/12.2233225
- Planck Collaboration, (2014), A&A, 565, pp. A103, 10.1051/0004-6361/201322612
- Planck Collaboration, (2014), A&A, 571, pp. A2, 10.1051/0004-6361/201321550
- Planck Collaboration, (2014), A&A, 571, pp. A3, 10.1051/0004-6361/201321574
- Planck Collaboration, (2014), A&A, 571, pp. A5, 10.1051/0004-6361/201321527
- Planck Collaboration, (2016), A&A, 586, pp. A133, 10.1051/0004-6361/201425034
- Planck Collaboration, (2016), A&A, 594, pp. A1, 10.1051/0004-6361/201527101
- Planck Collaboration, (2016), A&A, 594, pp. A2, 10.1051/0004-6361/201525818
- Planck Collaboration, (2016), A&A, 594, pp. A3, 10.1051/0004-6361/201526998
- Planck Collaboration, (2016), A&A, 594, pp. A5, 10.1051/0004-6361/201526632
- Planck Collaboration, (2016), A&A, 594, pp. A6, 10.1051/0004-6361/201525813
- Planck Collaboration, (2016), A&A, 594, pp. A10, 10.1051/0004-6361/201525967
- Planck Collaboration, (2016), A&A, 594, pp. A26, 10.1051/0004-6361/201526914
- Planck Collaboration, (2017), A&A, 599, pp. A51, 10.1051/0004-6361/201629164
- Planck Collaboration, (2017), A&A, 607, pp. A122, 10.1051/0004-6361/201630311
- Planck Collaboration, (2020), A&A, 641, pp. A1, 10.1051/0004-6361/201833880
- Planck Collaboration, (2020), A&A, 641, pp. A2, 10.1051/0004-6361/201833293
- Planck Collaboration, (2020), A&A, 641, pp. A3, 10.1051/0004-6361/201832909
- Planck Collaboration, (2020), A&A, 641, pp. A4, 10.1051/0004-6361/201833881
- Planck Collaboration, (2020), A&A, 641, pp. A11, 10.1051/0004-6361/201832618
- Planck Collaboration, (2020), A&A, 643, pp. A42, 10.1051/0004-6361/202038073
- Plaszczynski, (2014), MNRAS, 439, pp. 4048, 10.1093/mnras/stu270
- Platania, (1998), ApJ, 505, pp. 473, 10.1086/306175
- Poidevin, (2019), MNRAS, 486, pp. 462, 10.1093/mnras/sty3462
- Poidevin, (2022), MNRAS, 519, pp. 3481, 10.1093/mnras/stac3151
- Puglisi, (2018), ApJ, 858, pp. 85, 10.3847/1538-4357/aab3c7
- Reich, (2001), A&A, 376, pp. 861, 10.1051/0004-6361:20011000
- Remazeilles, (2015), MNRAS, 451, pp. 4311, 10.1093/mnras/stv1274
- Rubiño-Martín, (2010), Astrophys. Space Sci. Proc., 14, pp. 127, 10.1007/978-3-642-11250-8_12
- Rubiño-Martín, (2012), Adv. Astron., 2012, pp. 351836, 10.1155/2012/351836
- Rubiño-Martín, (2012), Proc. SPIE Conf. Ser. Vol. 8444, Ground-based and Airborne Telescopes IV, pp. 84442Y, 10.1117/12.926581
- Sanquirce, (2014), Proc. SPIE Conf. Ser. Vol. 9145, Ground-based and Airborne Telescopes V, pp. 914524, 10.1117/12.2056615
- Sanquirce-García, (2016), Proc. SPIE Conf. Ser. Vol. 9906, Ground-based and Airborne Telescopes VI, pp. 99064N, 10.1117/12.2232644
- Sastry, (1967), AJ, 72, pp. 230, 10.1086/110224
- Satoh, (1967), PASJ, 19, pp. 488
- Schmelling, (1995), Phys. Scr, 51, pp. 676, 10.1088/0031-8949/51/6/002
- Seielstad, (1968), ApJ, 154, pp. 817, 10.1086/149804
- Soboleva, (1966), Soviet Ast., 10, pp. 214
- Thorne, (2017), MNRAS, 469, pp. 2821, 10.1093/mnras/stx949
- Tramonte, (2022), MNRAS, 519, pp. 3432, 10.1093/mnras/stac3502
- Tristram, (2005), MNRAS, 358, pp. 833, 10.1111/j.1365-2966.2005.08760.x
- Tristram, (2022), Phys. Rev. D, 105, pp. 083524, 10.1103/PhysRevD.105.083524
- Vinyaikin, (2014), Astron. Rep., 58, pp. 626, 10.1134/S1063772914090078
- Wehus, (2017), A&A, 597, pp. A131, 10.1051/0004-6361/201525659
- Weiland, (2011), ApJS, 192, pp. 19, 10.1088/0067-0049/192/2/19
- Weiland, (2022), ApJ, pp. 24, 10.3847/1538-4357/ac83ab
- Wright, (1970), MNRAS, 150, pp. 271, 10.1093/mnras/150.3.271
- Zaldarriaga, (1997), Phys. Rev. D, 55, pp. 1830, 10.1103/PhysRevD.55.1830
- Zonca, (2019), J. Open Sour. Softw., 4, pp. 1298, 10.21105/joss.01298