Evaluación in vitro de la eficacia de plaquetas convencionales, atemperadas y congeladas. Posible empleo en el medio militarArtículo resumido del trabajo ganador ex aequo de la XI Edición del Premio Fidel Pagés Miravé

  1. J.R. Díaz-Valdés 1
  2. R. Navarro-Suay 2
  3. N. Díez-Navarro 3
  4. A. Pérez-Ferrer 4
  1. 1 Capitán médico. Servicio de Hematología y Transfusión. Hospital Central de la Defensa Gómez Ulla. Universidad de Alcalá. España
  2. 2 Teniente coronel médico. Servicio de Anestesia y Reanimación. Hospital Central de la Defensa Gómez Ulla. Universidad de Alcalá. España
  3. 3 SpotLab. Universidad Politécnica de Madrid. España
  4. 4 Servicio de Anestesia y Reanimación. Hospital Infanta Sofía. Universidad Europea. Madrid. España
Revista:
Sanidad militar: revista de sanidad de las Fuerzas Armadas de España

ISSN: 1887-8571

Ano de publicación: 2022

Volume: 78

Número: 4

Páxinas: 216-228

Tipo: Artigo

Outras publicacións en: Sanidad militar: revista de sanidad de las Fuerzas Armadas de España

Resumo

Introduction. Exsanguinating hemorrhage is the first preventable cause of death for combatants in armed conflicts, thus making the possibility of transfusing blood components early an absolutely essential benefit during health care for casualties generated in military operations. Throughout the numerous conflicts that have occurred during the past century, there have been important changes in the hemotherapy treatment of casualties along with an evolution of the health doctrine regarding this issue. In some massive transfusion protocols, the diagnostic technique of thromboelastometry (TE) has been used. TE is a test that shows the viscoelastic properties of blood from clot formation to fibrinolysis, evaluates platelet function and correlates quickly with the physiological process of hemostasis. The main objective of this study is the evaluation in vitro of the hemostatic capacity of the various cold, frozen and fresh platelet concentrates through standardized coagulation tests and thromboelastometry, clarifying whether the contribution to the clot is significantly improved with cold platelet pools (preserved at 4ºC), compared to fresh and frozen platelets. It is also intended to determine what advantages would be the incorporation of cold platelets in transfusion medicine performed in the military environment. Material and methods. An experimental study was designed to compare cold (refrigerated), frozen and fresh (conventional) platelets in vitro, analyzing their performance and effectiveness through systematic blood analysis, routine laboratory coagulation mechanisms (Prothrombin Time, Prothrombin Activity, Cephalin and Fibrinogen) and Rotational Thromboelastometry (ROTEM). A sample of 20 healthy patients was recruited, after informing them in writing and obtaining the mandatory informed consent, they donated 6 tubes with 10 ml citrate. of blood per patient. For the comparison, the data collected from the performance of the ROTEM between baseline and experimental samples (after platelet transfusion) were normally distributed and analyzed using the paired Student’s t-test and were analyzed by multiple linear regression, adjusting and not adjusting according to the platelet count. Approval was obtained from the Drug Research Ethics Committee and the hospital research committee. Results. The mean of the EXTEM CT parameter is significantly lower in the sample with frozen platelets compared to that of tempered and normal platelets. The mean of the EXTEM CFT parameter is significantly lower in the sample with normal platelets compared to that of frozen platelets. The mean of the EXTEM CFT parameter is significantly lower in the sample with frozen platelets compared to that of tempered platelets. The mean of the Platelet Index parameter is significantly higher in the sample with normal platelets compared to that of tempered platelets. The mean of the MCE PI parameter is significantly higher in the sample with tempered platelets compared to that of frozen platelets. Conclusion. After evaluating the hemostatic capacity in vitro using standardized coagulation tests and thromboelastometry, tempered platelets significantly improve the maximum elasticity of the clot in relation to platelet count compared to frozen platelets, but not compared to fresh platelets. The incorporation of tempered platelets in transfusion medicine in the military environment would be another treatment alternative for discharge with exsanguinating hemorrhage and would provide logistical advantages by increasing the shelf life of standard platelets from seven to twenty-one days and simplifying processing, transportation and Reconstitution of the blood component to the liquid medium as it is not necessary to freeze it.

Referencias bibliográficas

  • 1. Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefield (2001–2011): Implications for the future of combat casualty care. J Trauma Acute Care Surg. diciembre de 2012;73(6):S431-7.
  • 2. Kotwal RS, Howard JT, Orman JA, Tarpey BW, Bailey JA, Champion HR, et al. The Effect of a Golden Hour Policy on the Morbidity and Mortality of Combat Casualties. JAMA Surg. 1 de enero de 2016;151(1):15.
  • 3. Yazer MH, Spinella PC, Bank EA, Cannon JW, Dunbar NM, Holcomb JB, et al. THOR-AABB Working Party Recommendations for a Prehospital Blood Product Transfusion Program. Prehosp Emerg Care. 19 de noviembre de 2021;1-13.
  • 4. Cap AP, Beckett A, Benov A, Borgman M, Chen J, Corley JB, et al. Whole Blood Transfusion. Mil Med. 1 de septiembre de 2018;183(suppl_2):44-51.
  • 5. Braverman MA, Smith A, Shahan CP, Axtman B, Epley E, Hitchman S, et al. From battlefront to homefront: creation of a civilian walking blood bank. Transfusion (Paris) [Internet]. junio de 2020 [citado 13 de marzo de 2022];60(S3). Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/ trf.15694
  • 6. Reddoch-Cardenas KM, Bynum JA, Meledeo MA, Nair PM, Wu X, Darlington DN, et al. Cold-stored platelets: A product with function optimized for hemorrhage control. Transfus Apher Sci. febrero de 2019;58(1):16-22.
  • 7. Gurney JM, Holcomb JB. Blood Transfusion from the Military’s Standpoint: Making Last Century’s Standard Possible Today. Curr Trauma Rep. junio de 2017;3(2):144-55.
  • 8. Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage Control Resuscitation: Directly Addressing the Early Coagulopathy of Trauma. J Trauma Inj Infect Crit Care. febrero de 2007;62(2):307-10.
  • 9. Clinical Practice Guidelines (CPGs). Joint Trauma System logo. Joint Trauma System. The Department of Defense Center of Excellence for Trauma.
  • 10. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma: The PROPPR Randomized Clinical Trial. JAMA. 3 de febrero de 2015;313(5):471.
  • 11. Butler FK, Holcomb JB, Schreiber MA, Kotwal RS, Jenkins DA, Champion HR, et al. Fluid Resuscitation for Hemorrhagic Shock in Tactical Combat Casualty Care: TCCC Guidelines Change 14-01--2 June 2014. J Spec Oper Med Peer Rev J SOF Med Prof. 2014;14(3):13-38.
  • 12. Yazer MH, Cap AP, Spinella PC. Raising the standards on whole blood. J Trauma Acute Care Surg. junio de 2018;84(6S):S14-7.
  • 13. Shlaifer A, Siman-Tov M, Radomislensky I, Peleg K, Shina A, Baruch EN, et al. Prehospital administration of freeze-dried plasma, is it the solution for trauma casualties? J Trauma Acute Care Surg. octubre de 2017;83(4):675-82.
  • 14. Craig J, Aguiar-Ibanez R, Bhattacharya S, Downie S, Duffy S, Kohli H. Health Technology Assessment Report 11: the clinical and cost effectiveness of thromboelastography /thromboelasometry. www.nhshealthquality.org; 2008.
  • 15. Doran CM, Woolley T, Midwinter MJ. Feasibility of Using Rotational Thromboelastometry to Assess Coagulation Status of Combat Casualties in a Deployed Setting. J Trauma Inj Infect Crit Care. julio de 2010;69(1):S40-8.
  • 16. Guide to the preparation, use and quality assurance of blood components: Council of Europe. Available from https://www. edqm.eu/en/blood-guide (March 17th, 2021).
  • 17. Al-Riyami AZ, Jug R, La Rocca U, Keshavarz H, Landry D, Shehata N, et al. Quality of evidence-based guidelines for platelet transfusion and use: A systematic review. Transfusion (Paris). marzo de 2021;61(3):948-58.
  • 18. Hegde S, Akbar H, Zheng Y, Cancelas JA. Towards increasing shelf life and haemostatic potency of stored platelet concentrates. Curr Opin Hematol. noviembre de 2018;25(6):500-8.
  • 19. Badloe J. The Netherlands experience with -80o C Red Cells, Plasma and Platelets in Combat Casualty Care. Int Rev Armed Forces 2014. 87(4):5-11.
  • 20. Noorman F, Strelitski R, Lelkens C. -80o C Red Cells Plasma and Platelets in Combat Casualty Care. IPRED. 2009;s101.
  • 21. Noorman F, van Dongen TTCF, Plat MCJ, Badloe JF, Hess JR, Hoencamp R. Transfusion: -80°C Frozen Blood Products Are Safe and Effective in Military Casualty Care. Dao M, editor. PLOS ONE. 13 de diciembre de 2016;11(12):e0168401.
  • 22. Bohonek M. Concept of Blood Supply in the Army of the Czech RepublicNew Field Transfusion Unit. MCIF. 2015;4:46-51.
  • 23. Bohonek M, Seghatchian J. Emergency Supply Policy of Cryopreserved RBC and PLT: The Czech Republic Concept. Transfus Apher Sci. junio de 2020;59(3):102788.
  • 24. Bohonek M. The Blood Crisis Policy ub the Czech Republic. MCIF. 2015;1:64-6.
  • 25. Bohonek M, Kutac D, Landova L, Koranova M, Sladkova E, Staskova E, et al. The use of cryopreserved platelets in the treatment of polytraumatic patients and patients with massive bleeding. Transfusion (Paris). abril de 2019;59(S2):1474-8.
  • 26. Bohonek M, Landova LL. Frozen platelets as an easy available alternative in blood components supply. Vox Sang. 2015;109(S1):176.
  • 27. Bohonek M, Kutac D, Landova L, Koranova M, Sladkova E, Staskova E. Frozen platelets in clinical praxis: comparative study of native platelets. Transfuze Hematol Dnes. 2016;(22):268-78.
  • 28. Neuhaus SJ, Wishaw K, Lelkens C. Australian experience with frozen blood products on military operations. Med J Aust. febrero de 2010;192(4):203-5.
  • 29. Bohon-k M. Cryopreservation of Platelets: Advances and Current Practice. En: Bozkurt Y, editor. Cryopreservation Biotechnology in Biomedical and Biological Sciences [Internet]. IntechOpen; 2018 [citado 21 de marzo de 2022]. Disponible en: https://www.intechopen.com/books/cryopreservation-biotechnology-in-biomedical-and-biological-sciences/cryopreservation-of-platelets-advances-and-current-practice
  • 30. Gonzales R, Taylor AL, Atkinson AJ, Malloy WW, Macdonald VW, Cap AP. US Army blood program: 2025 and beyond: US ARMY BLOOD PROGRAM: 2025 AND BEYOND. Transfusion (Paris). marzo de 2016;56:S85-93.
  • 31. Navarro Suay R, Pérez Ferrer A, Jiménez Vizuete JM. Control de la hemorragia en el ámbito militar. Rev Esp Anestesiol Reanim. diciembre de 2012;59(10):562-72.
  • 32. Navarro Suay R, Tamburri Bariain R, Vírseda Chamorro I, Pérez Ferrer A. Empleo de plaquetas congeladas en trauma masivo de extremidades. Rev Esp Anestesiol Reanim. abril de 2015;62(4):233-4.
  • 33. Manual de hemoterapia en zona de operaciones. Inspección General de Sanidad; 2013.
  • 34. Navarro Suay R, Tamburri Bariain R, Castillejo Pérez S, García Aroca MA, Bodega Quiroga I, Saenz Casco LV, et al. Anesthesiologic and Surgical Experiences of the Spanish Role 2 Enhanced in Herat, Afghanistan. J Arch Mil Med [Internet]. 26 de mayo de 2015 [citado 21 de marzo de 2022];3(2). Disponible en: https://brief.land/jamm/articles/20807.html
  • 35. Navarro R, Avila P, Castillejo S, Vírseda I. Hemocomponent trazability in battlefield, retrospective analysis from 2008 to 2014. Spanish Medical Corps Experience in Afghanistan War. Eur J Anesth. 2015;32(S53):382-3.
  • 36. López-Aguilar JC, Cascante-Ruiz V, Núñez-Márquez L, Ramos-Garrido A. Hematíes crioconservados, ¿qué queda al final del camino? Sanid Mil. 77(4):180-5.
  • 37. Murphy S, Gardner FH. Platelet Preservation: Effect of Storage Temperature on Maintenance of Platelet Viability —Deleterious Effect of Refrigerated Storage. N Engl J Med. 15 de mayo de 1969;280(20):1094-8.
  • 38. Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, et al. The Clearance Mechanism of Chilled Blood Platelets. Cell. enero de 2003;112(1):87-97.
  • 39. Quach ME, Chen W, Li R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood. 5 de abril de 2018;131(14):1512-21.
  • 40. Vostal JG, Gelderman MP, Skripchenko A, Xu F, Li Y, Ryan J, et al. Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers. Transfusion (Paris). enero de 2018;58(1):25-33.
  • 41. Getz TM. Physiology of cold-stored platelets. Transfus Apher Sci. febrero de 2019;58(1):12-5.
  • 42. Reddoch KM, Pidcoke HF, Montgomery RK, Fedyk CG, Aden JK, Ramasubramanian AK, et al. Hemostatic Function of Apheresis Platelets Stored at 4°C and 22°C. Shock. mayo de 2014;41(Supplement 1):54-61.
  • 43. Nair PM, Pandya SG, Dallo SF, Reddoch KM, Montgomery RK, Pidcoke HF, et al. Platelets stored at 4°C contribute to superior clot properties compared to current standard-of-care through fibrin-crosslinking. Br J Haematol. julio de 2017;178(1):119-29.
  • 44. Wagner SJ, Getz TM, Thompson-Montgomery D, Turgeon A. Preliminary characterization of the properties of cold-stored apheresis platelets suspended in PAS-III with and without an 8-hour room temperature hold. Transfusion (Paris). noviembre de 2020;60(11):2489-93.
  • 45. Marini I, Aurich K, Jouni R, Nowak-Harnau S, Hartwich O, Greinacher A, et al. Cold storage of platelets in additive solution: the impact of residual plasma in apheresis platelet concentrates. Haematologica. enero de 2019;104(1):207-14.
  • 46. Jiménez-Marco T, Castrillo A, Hierro-Riu F, Vicente V, Rivera J. Frozen and cold-stored platelets: reconsidered platelet products. Platelets. 2 de enero de 2022;33(1):27-34.
  • 47. Filip DJ, Aster RH. Relative hemostatic effectiveness of human platelets stored at 4 degrees and 22 degrees C. J Lab Clin Med. abril de 1978;91(4):618-24.
  • 48. Warner MA, Kurian EB, Hammel SA, Buskirk CM, Kor DJ, Stubbs JR. Transition from room temperature to cold-stored platelets for the preservation of blood inventories during the COVID-19 pandemic. Transfusion (Paris). enero de 2021;61(1):72-7.
  • 49. Wood B, Johnson L, Hyland RA, Marks DC. Maximising platelet availability by delaying cold storage. Vox Sang. julio de 2018;113(5):403-11.
  • 50. Strandenes G, Sivertsen J, Bjerkvig CK, Fosse TK, Cap AP, del Junco DJ, et al. A Pilot Trial of Platelets Stored Cold versus at Room Temperature for Complex Cardiothoracic Surgery. Anesthesiology. 1 de diciembre de 2020;133(6):1173-83.
  • 51. Stolla M, Bailey SL, Fang L, Fitzpatrick L, Gettinger I, Pellham E, et al. Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C–stored platelets. Transfusion (Paris). marzo de 2020;60(3):613-21.
  • 52. Braathen H, Sivertsen J, Lunde THF, Kristoffersen EK, Assmus J, Hervig TA, et al. In vitro quality and platelet function of cold and delayed cold storage of apheresis platelet concentrates in platelet additive solution for 21 days. Transfusion (Paris). agosto de 2019;59(8):2652-61.