Coarse-Grained Molecular Dynamics of pH-Sensitive Lipids

  1. Lado Touriño, Isabel 1
  2. Cerpa Naranjo, Arisbel 1
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

Revista:
International Journal of Molecular Sciences

ISSN: 1422-0067

Año de publicación: 2023

Volumen: 24

Número: 5

Páginas: 4632

Tipo: Artículo

DOI: 10.3390/IJMS24054632 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Molecular Sciences

Resumen

pH-sensitive lipids represent a class of lipids that can be protonated and destabilized inacidic environments, as they become positively charged in response to low-pH conditions. Theycan be incorporated into lipidic nanoparticles such as liposomes, which are able to change theirproperties and allow specific drug delivery at the acidic conditions encountered in some pathologicalmicroenvironments. In this work, we used coarse-grained molecular-dynamic simulations to studythe stability of neutral and charged lipid bilayers containing POPC (1-palmitoyl-2-oleoyl-sn-glycero3-phosphocholine) and various kinds of ISUCA ((F)2-(imidazol-1-yl)succinic acid)-derived lipids,which can act as pH-sensitive molecules. In order to explore such systems, we used a MARTINIderived forcefield, previously parameterized using all-atom simulation results. We calculated theaverage area per lipid, the second-rank order parameter and the lipid diffusion coefficient of bothlipid bilayers made of pure components and mixtures of lipids in different proportions, under neutralor acidic conditions. The results show that the use of ISUCA-derived lipids disturbs the lipid bilayerstructure, with the effect being particularly marked under acidic conditions. Although more-in depthstudies on these systems must be carried out, these initial results are encouraging and the lipidsdesigned in this research could be a good basis for developing new pH-sensitive liposomes.

Información de financiación

This research received no funding.

Financiadores

Referencias bibliográficas

  • Drummond, (2000), Prog. Lipid Res., 39, pp. 409, 10.1016/S0163-7827(00)00011-4
  • Fang, (2019), Pharm. Res., 36, pp. 81, 10.1007/s11095-019-2607-6
  • Zheng, (2017), Chem. Phys. Lipids, 210, pp. 129, 10.1016/j.chemphyslip.2017.10.004
  • Bangham, (1965), J. Mol. Biol., 13, pp. 238, 10.1016/S0022-2836(65)80093-6
  • Andra, (2022), Bionanoscience, 12, pp. 274, 10.1007/s12668-022-00941-x
  • Bulbake, U., Doppalapudi, S., Kommineni, N., and Khan, W. (2017). Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics, 9.
  • (2019), Cancer Nanotechnol., 10, pp. 11, 10.1186/s12645-019-0055-y
  • Needham, (2013), Faraday Discuss., 161, pp. 515, 10.1039/C2FD20111A
  • Clares, (2013), Eur. J. Pharm. Biopharm., 85, pp. 329, 10.1016/j.ejpb.2013.01.028
  • Zhu, (2013), Integr. Biol., 5, pp. 96, 10.1039/c2ib20135f
  • Chi, (2017), J. Control. Release, 261, pp. 113, 10.1016/j.jconrel.2017.06.027
  • Li, (2017), J. Control. Release, 261, pp. 126, 10.1016/j.jconrel.2017.06.029
  • Stubbs, (1999), Adv. Enzym. Regul., 39, pp. 13, 10.1016/S0065-2571(98)00018-1
  • Madni, (2014), J. Pharm. Pharm. Sci., 17, pp. 401, 10.18433/J3CP55
  • Zhao, (2016), J. Control. Release, 222, pp. 56, 10.1016/j.jconrel.2015.12.006
  • Yoshizaki, (2014), Biomaterials, 35, pp. 8186, 10.1016/j.biomaterials.2014.05.077
  • Yoshizaki, Y., Yuba, E., Komatsu, T., Udaka, K., Harada, A., and Kono, K. (2016). Improvement of Peptide-Based Tumor Immunotherapy Using pH-Sensitive Fusogenic Polymer-Modified Liposomes. Molecules, 21.
  • Nsairat, (2022), Heliyon, 8, pp. e09394, 10.1016/j.heliyon.2022.e09394
  • Oya, T.A., Ishiyama, A.A., and Nishikawa, N.A. (2017). Imidazole Compound and Liposome Containing Same. (EP 3170812A1), European Patent, Available online: https://data.epo.org/publication-server/document?iDocId=5335445&iFormat=0.
  • Huang, R., Gyanani, V., Zhao, S., Lu, Y., and Guo, X. (2022). Imidazole-Based pH-Sensitive Convertible Liposomes for Anticancer Drug Delivery. Pharmaceuticals, 15.
  • Provent, (2007), Cancer Res., 67, pp. 7638, 10.1158/0008-5472.CAN-06-3459
  • Woo, (2016), Sci. Rep., 6, pp. 22299, 10.1038/srep22299
  • Skjevik, (2016), Phys. Chem. Chem. Phys., 18, pp. 10573, 10.1039/C5CP07379K
  • Hakobyan, (2019), J. Chem. Theory Comput., 15, pp. 6393, 10.1021/acs.jctc.9b00390
  • Hsieh, (2021), Langmuir, 38, pp. 3, 10.1021/acs.langmuir.1c02084
  • Lee, H. (2020). Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics, 12.
  • Lemaalem, (2020), RSC Adv., 10, pp. 3745, 10.1039/C9RA08632C
  • Parchekani, (2022), Sci. Rep., 12, pp. 2371, 10.1038/s41598-022-06380-8
  • Marrink, (2007), J. Phys. Chem. B, 111, pp. 7812, 10.1021/jp071097f
  • Markvoort, (2007), J. Phys. Chem. B, 111, pp. 5719, 10.1021/jp068277u
  • Shinoda, (2012), Curr. Opin. Struct. Biol., 22, pp. 175, 10.1016/j.sbi.2012.01.011
  • Markvoort, (2012), J. Phys. Chem. B, 116, pp. 12677, 10.1021/jp3062306
  • Frallicciardi, (2022), Nat. Commun., 13, pp. 1605, 10.1038/s41467-022-29272-x
  • Risselada, (2009), Phys. Chem. Chem. Phys., 11, pp. 2056, 10.1039/b818782g
  • Kroon, (2021), Methods Mol. Biol., 2199, pp. 315, 10.1007/978-1-0716-0892-0_18
  • Rzepiela, (2009), J. Chem. Theory Comput., 5, pp. 3195, 10.1021/ct900313w
  • Ramadurai, (2010), Biophys. J., 99, pp. 1447, 10.1016/j.bpj.2010.05.042
  • Nagle, (2000), Biochim. Biophys. Acta (BBA)-Rev. Biomembr., 1469, pp. 159, 10.1016/S0304-4157(00)00016-2
  • Risselada, (2009), Soft Matter, 5, pp. 4531, 10.1039/b913210d
  • Smirnova, (2013), Soft Matter, 9, pp. 10705, 10.1039/c3sm51771c
  • Kucerka, (2006), J. Membr. Biol., 208, pp. 193, 10.1007/s00232-005-7006-8
  • Risselada, (2008), Proc. Natl. Acad. Sci. USA, 105, pp. 17367, 10.1073/pnas.0807527105
  • Bennett, (2009), J. Am. Chem. Soc., 131, pp. 12714, 10.1021/ja903529f
  • Teixeira, (2006), Biophys. Chem., 119, pp. 69, 10.1016/j.bpc.2005.09.007
  • Kucerka, (2009), Biophys. J., 97, pp. 1926, 10.1016/j.bpj.2009.06.050
  • Arnarez, (2015), J. Chem. Theory Comput., 11, pp. 260, 10.1021/ct500477k
  • Wang, (2010), New J. Phys., 12, pp. 095004, 10.1088/1367-2630/12/9/095004
  • Lindblom, (2009), Biochim. Biophys. Acta, 1788, pp. 234, 10.1016/j.bbamem.2008.08.016
  • Fahey, (1977), Science, 195, pp. 305, 10.1126/science.831279
  • Lindblom, (1994), Prog. Nucl. Magn. Reson. Spectrosc., 26, pp. 483, 10.1016/0079-6565(94)80014-6
  • Apajalahti, (2010), Faraday Discuss., 144, pp. 411, 10.1039/B901487J
  • (2023, January 19). Available online: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/BIOVIA/PDF/BIOVIA-Material-Studio-mesocite.pdf.
  • (2023, January 19). Materials Studio Materials Modeling & Simulation Application|Dassault Systèmes BIOVIA. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/.
  • Marrink, (2004), J. Phys. Chem. B, 108, pp. 750, 10.1021/jp036508g
  • (1991), Prog. Theor. Phys. Suppl., 103, pp. 1, 10.1143/PTPS.103.1
  • Andersen, (1980), J. Chem. Phys., 72, pp. 2384, 10.1063/1.439486
  • Hollingsworth, (2018), Neuron, 99, pp. 1129, 10.1016/j.neuron.2018.08.011
  • (2023, January 19). Scholarly Community Encyclopedia. Available online: https://encyclopedia.pub/entry/33716.
  • Djurre, (2013), J. Chem. Theory Comput., 9, pp. 687, 10.1021/ct300646g
  • Sun, (1998), Comput. Theor. Polym. Sci., 8, pp. 229, 10.1016/S1089-3156(98)00042-7
  • Alessandri, (2017), J. Am. Chem. Soc., 139, pp. 3697, 10.1021/jacs.6b11717
  • Qiu, (2017), J. Mater. Chem. A, 5, pp. 21234, 10.1039/C7TA06609K