Interfacial Shear Strength of Single-Walled Carbon Nanotubes-Cement Composites from Molecular Dynamics and Finite Element Studies

  1. Talayero Giménez de Azcárate, Carlos Alberto 1
  2. Lado Touriño, Isabel 1
  3. Ait Salem Duque, Omar 2
  4. Sánchez Ramos, Ismael 2
  5. Páez Pavón, Alicia 1
  6. G. Merodio-Perea, Rosario 1
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Hexagon HMI, 28050 Madrid, Spain
Revista:
Materials

ISSN: 1996-1944

Año de publicación: 2023

Volumen: 16

Número: 5

Páginas: 1992

Tipo: Artículo

DOI: 10.3390/MA16051992 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materials

Resumen

Carbon nanotubes (CNTs) are nanometer-sized structures that can be used to reinforce cement matrices. The extent to which the mechanical properties are improved depends on the interfacial characteristics of the resulting materials, that is, on the interactions established between the CNTs and the cement. The experimental characterization of these interfaces is still impeded by technical limitations. The use of simulation methods has a great potential to give information about systems lacking experimental information. In this work, molecular dynamics (MD) and molecular mechanics (MM) were used in conjunction with finite element simulations to study the interfacial shear strength (ISS) of a structure formed by a pristine single-walled CNT (SWCNT) inserted in a tobermorite crystal. The results show that, for a constant SWCNT length, ISS values increase when the SWCNT radius increases, while for a constant SWCNT radius, shorter lengths enhance ISS values.

Información de financiación

Financiadores

Referencias bibliográficas

  • 1. Reales, O.A.M.; Filho, R.D.T. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
  • 2. Shi, T.; Li, Z.; Guo, J.; Gong, H.; Gu, C. Research progress on CNTs/CNFs-modified cement-based composites—A review. Constr. Build. Mater. 2019, 202, 290–307. [Google Scholar] [CrossRef]
  • 3. Rocha, V.V.; Ludvig, P. Influence of Carbon Nanotubes on the Mechanical Behavior and Porosity of Cement Pastes Prepared by A Dispersion on Cement Particles in Isopropanol Suspension. Materials 2020, 13, 3164. [Google Scholar] [CrossRef] [PubMed]
  • 4. Makul, N. Advanced smart concrete—A review of current progress, benefits and challenges. J. Clean. Prod. 2020, 274, 122899. [Google Scholar] [CrossRef]
  • 5. Metaxa, Z.; Tolkou, A.; Efstathiou, S.; Rahdar, A.; Favvas, E.; Mitropoulos, A.; Kyzas, G. Nanomaterials in Cementitious Composites: An Update. Molecules 2021, 26, 1430. [Google Scholar] [CrossRef] [PubMed]
  • 6. Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon N. Y. 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
  • 7. Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
  • 8. Gao, F.; Tian, W.; Wang, Z.; Wang, F. Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials. Constr. Build. Mater. 2020, 260, 120452. [Google Scholar] [CrossRef]
  • 9. Gao, Y.; Jing, H.; Zhou, Z.; Shi, X.; Li, L.; Fu, G. Roles of carbon nanotubes in reinforcing the interfacial transition zone and impermeability of concrete under different water-to-cement ratios. Constr. Build. Mater. 2021, 272, 121664. [Google Scholar] [CrossRef]
  • 10. Adhikary, S.K.; Rudžionis, Ž.; Rajapriya, R. The Effect of Carbon Nanotubes on the Flowability, Mechanical, Microstructural and Durability Properties of Cementitious Composite: An Overview. Sustainability 2020, 12, 8362. [Google Scholar] [CrossRef]
  • 11. Du, Y.; Gao, P.; Yang, J.; Shi, F.; Shabaz, M. Experimental Analysis of Mechanical Properties and Durability of Cement-Based Composite with Carbon Nanotube. Adv. Mater. Sci. Eng. 2021, 2021, 8777613. Available online: https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=16878434&v=2.1&it=r&id=GALE%7CA696851757&sid=googleScholar&linkaccess=fulltext (accessed on 6 October 2022). [CrossRef]
  • 12. Yu, Z.; Lau, D. Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete. Coupled Syst. Mech. 2017, 6, 335–349. [Google Scholar] [CrossRef]
  • 13. Qin, R.; Zhou, A.; Yu, Z.; Wang, Q.; Lau, D. Role of carbon nanotube in reinforcing cementitious materials: An experimental and coarse-grained molecular dynamics study. Cem. Concr. Res. 2021, 147, 106517. [Google Scholar] [CrossRef]
  • 14. Sindu, B.S.; Sasmal, S. Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite. Constr. Build. Mater. 2020, 253, 119190. [Google Scholar] [CrossRef]
  • 15. Yilmaz, Y.I. Analyzing Single Fiber Fragmentation Test Data by Using Stress Transfer Model. J. Compos. Mater. 2002, 36, 537–551. [Google Scholar] [CrossRef]
  • 16. Zhao, Y.R.; Xing, Y.M.; Lei, Z.K.; Lang, F.C. Interfacial stress transfer behavior in a specially-shaped fiber/matrix pullout test. Acta Mech. Sin. 2009, 26, 113–119. [Google Scholar] [CrossRef]
  • 17. Zu, M.; Li, Q.; Zhu, Y.; Dey, M.; Wang, G.; Lu, W.; Deitzel, J.M.; Gillespie, J.W.; Byun, J.-H.; Chou, T.-W. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon N. Y. 2012, 50, 1271–1279. [Google Scholar] [CrossRef]
  • 18. Battisti, A.; Ojos, D.E.-D.L.; Ghisleni, R.; Brunner, A.J. Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos. Sci. Technol. 2014, 95, 121–127. [Google Scholar] [CrossRef]
  • 19. Rodríguez, M.; Molina-Aldareguía, J.; González, C.; Llorca, J. A methodology to measure the interface shear strength by means of the fiber push-in test. Compos. Sci. Technol. 2012, 72, 1924–1932. [Google Scholar] [CrossRef] [Green Version] 20. Jean, J.-H.; Yu, C.; Park, C.-G. Bonding Characteristics of Macrosynthetic Fiber in Latex-Modified Fiber-Reinforced Cement Composites as a Function of Carbon Nanotube Content. Int. J. Polym. Sci. 2016, 2016, 7324975. [Google Scholar] [CrossRef] [Green Version] 21. Li, Y.; Wang, Q.; Wang, S. A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos. Part B Eng. 2019, 160, 348–361. [Google Scholar] [CrossRef]
  • 22. Liao, K.; Li, S. Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 2001, 79, 4225–4227. [Google Scholar] [CrossRef]
  • 23. Chowdhury, S.; Okabe, T. Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos. Part A Appl. Sci. Manuf. 2007, 38, 747–754. [Google Scholar] [CrossRef]
  • 24. Li, Y.; Liu, Y.; Peng, X.; Yan, C.; Liu, S.; Hu, N. Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites. Comput. Mater. Sci. 2011, 50, 1854–1860. [Google Scholar] [CrossRef]
  • 25. Chandra, Y.; Scarpa, F.; Adhikari, S.; Zhang, J.; Flores, E.S.; Peng, H.-X. Pullout strength of graphene and carbon nanotube/epoxy composites. Compos. Part B Eng. 2016, 102, 1–8. [Google Scholar] [CrossRef] [Green Version] 26. Chawla, R.; Sharma, S. Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos. Sci. Technol. 2017, 144, 169–177. [Google Scholar] [CrossRef]
  • 27. Fan, D.; Lue, L.; Yang, S. Molecular dynamics study of interfacial stress transfer in graphene-oxide cementitious composites. Comput. Mater. Sci. 2017, 139, 56–64. [Google Scholar] [CrossRef]
  • 28. Alkhateb, H.; Al-Ostaz, A.; Cheng, A.H.-D.; Li, X. Materials Genome for Graphene-Cement Nanocomposites. J. Nanomech. Micromech. 2013, 3, 67–77. [Google Scholar] [CrossRef]
  • 29. Eftekhari, M.; Mohammadi, S. Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C–S–H) composite. Compos. Part A Appl. Sci. Manuf. 2016, 82, 78–87. [Google Scholar] [CrossRef]
  • 30. Kai, M.; Zhang, L.; Liew, K. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding. Carbon N. Y. 2019, 146, 181–193. [Google Scholar] [CrossRef]
  • 31. Joshi, U.A.; Joshi, P.; Harsha, S.P.; Sharma, S.C. Evaluation of the Mechanical Properties of Carbon Nanotube Based Composites by Finite Element Analysis. Int. J. Eng. Sci. Technol. 2010, 2, 1098–1107. [Google Scholar] 32. Talayero, C.; Aït-Salem, O.; Gallego, P.; Páez-Pavón, A.; Merodio-Perea, R.G.; Lado-Touriño, I. Computational Prediction and Experimental Values of Mechanical Properties of Carbon Nanotube Reinforced Cement. Nanomaterials 2021, 11, 2997. [Google Scholar] [CrossRef] [PubMed]
  • 33. RAnsari, R.; Hemmatnezhad, M. Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn. 2011, 67, 373–383. [Google Scholar] [CrossRef]
  • 34. Alhassan, M.; Betoush, N.; Al-Huthaifi, N.; Al Dalou, A. Estimation of the fracture parameters of macro fiber-reinforced concrete based on nonlinear elastic fracture mechanics simulations. Results Eng. 2022, 15, 100539. [Google Scholar] [CrossRef]
  • 35. Bauchy, M.; Qomi, M.J.A.; Ulm, F.J.; Pellenq, R.J.M. Order and disorder in calcium–silicate–hydrate. J. Chem. Phys. 2014, 140, 214503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  • 36. Richardson, I.G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 2004, 34, 1733–1777. [Google Scholar] [CrossRef]
  • 37. Hou, D.; Lu, Z.; Li, X.; Ma, H.; Li, Z. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon N. Y. 2017, 115, 188–208. [Google Scholar] [CrossRef]
  • 38. Allen, A.J.; Thomas, J.J.; Jennings, H.M. Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat. Mater. 2007, 6, 311–316. [Google Scholar] [CrossRef] [PubMed]
  • 39. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef] [Green Version]
  • 40. Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1998, 81, 3684. [Google Scholar] [CrossRef] [Green Version]
  • 41. BIOVIA Materials Studio—BIOVIA—Dassault Systèmes®. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/ (accessed on 6 October 2022).
  • 42. Sun, H. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
  • 43. Nano Mechanical Properties on the Mineralogical Array of Calcium Silicate Hydrates and Calcium Hydroxide through Molecular Dynamics-CSIR-SERC|Request PDF. Available online: https://www.researchgate.net/publication/272702301_Nano_mechanical_properties_on_the_mineralogical_array_of_calcium_silicate_hydrates_and_calcium_hydroxide_through_molecular_dynamics-CSIR-SERC (accessed on 6 October 2022).
  • 44. Du, J.; Bu, Y.; Shen, Z. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix. Constr. Build. Mater. 2018, 164, 103–112. [Google Scholar] [CrossRef]
  • 45. Al-Ostaz, A.; Wu, W.; Cheng, D.; Song, D.A.; Associate, C.R.; Al-Ostaz, A. A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. Compos. Part B Eng. 2010, 41, 543–549. [Google Scholar] [CrossRef]
  • 46. Hajilar, S.; Shafei, B. Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Comput. Mater. Sci. 2015, 101, 216–226. [Google Scholar] [CrossRef]
  • 47. Marc 2021.3—Online Help (HTML). Available online: https://help.hexagonmi.com/bundle/marc_2021.3/page/marc_main.htm (accessed on 7 October 2022).
  • 48. MSC Marc-Mentat—Help Reference. Available online: https://simcompanion.hexagon.com/customers/s/article/msc-marc-mentat---help-reference-doc9250 (accessed on 7 October 2022).
  • 49. Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos 2010, 32, 110–115. [Google Scholar] [CrossRef]
  • 50. Abu Al-Rub, R.K.; Ashour, A.I.; Tyson, B.M. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr. Build. Mater. 2012, 35, 647–655. [Google Scholar] [CrossRef]
  • 51. Manzur, T.; Yazdani, N.; Emon, A.B. Effect of Carbon Nanotube Size on Compressive Strengths of Nanotube Reinforced Cementitious Composites. J. Mater. 2014, 2014, 960984. [Google Scholar] [CrossRef]
  • 52. Mohsen, M.O.; Alansari, M.; Taha, R.; Senouci, A.; Abutaqa, A. Impact of CNTs’ treatment, length and weight fraction on ordinary concrete mechanical properties. Constr. Build. Mater. 2020, 264, 120698. [Google Scholar] [CrossRef]
  • 53. Centro de Publicaciones; Ministerio de Fomento; Secretaría General Técnica. Instrucción de Hormigon Estructural. EHE-08, 5th ed.; Ministerio de Transportes, Movilidad y Agenda urbana: Madrid, Spain, 2011; p. 702. [Google Scholar]