Graphene Oxides (GOs) with Different Lateral Dimensions and Thicknesses Affect the Molecular Response in Chironomus riparius

  1. Martin-Folgar, Raquel 2
  2. Esteban-Arranz, Adrián 1
  3. Negri, Viviana 3
  4. Morales, Mónica 2
  1. 1 Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, 28006 Madrid, Spain
  2. 2 Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Madrid, Spain
  3. 3 Departamento de Ciencias de la Salud de la Universidad Europea de Madrid (UEM), C/ Tajo, Villaviciosa de Odón, 28670 Madrid, Spain
Revista:
Nanomaterials

ISSN: 2079-4991

Año de publicación: 2023

Volumen: 13

Número: 6

Páginas: 967

Tipo: Artículo

DOI: 10.3390/NANO13060967 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Nanomaterials

Resumen

Graphene oxide (GO) materials possess physicochemical properties that facilitate their application in the industrial and medical sectors. The use of graphene may pose a threat to biota, especially aquatic life. In addition, the properties of nanomaterials can differentially affect cell and molecular responses. Therefore, it is essential to study and define the possible genotoxicity of GO materials to aquatic organisms and their ecosystems. In this study, we investigated the changes in the expression of 11 genes in the aquatic organism Chironomus riparius after 96 h of exposure to small GOs (sGO), large GOs (lGO) and monolayer GOs (mlGO) at 50, 500 and 3000 μg/L. Results showed that the different genes encoding heat shock proteins (hsp90, hsp70 and hsp27) were overexpressed after exposure to these nanomaterials. In addition, ATM and NLK—the genes involved in DNA repair mechanisms—were altered at the transcriptional level. DECAY, an apoptotic caspase, was only activated by larger size GO materials, mlGO and lGO. Finally, the gene encoding manganese superoxide dismutase (MnSOD) showed higher expression in the mlG O-treated larvae. The lGO and mlGO treatments indicated high mRNA levels of a developmental gene (FKBP39) and an endocrine pathway-related gene (DRONC). These two genes were only activated by the larger GO materials. The results indicate that larger and thicker GO nanomaterials alter the transcription of genes involved in cellular stress, oxidative stress, DNA damage, apoptosis, endocrine and development in C. riparius. This shows that various cellular processes are modified and affected, providing some of the first evidence for the action mechanisms of GOs in invertebrates. In short, the alterations produced by graphene materials should be further studied to evaluate their effect on the biota to show a more realistic scenario of what is happening at the molecular level.

Información de financiación

This study was funded by the Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (Spain), Grant RTI2018-094598-B-100.

Financiadores

Referencias bibliográficas

  • (2018), Catal. Today, 301, pp. 104, 10.1016/j.cattod.2017.03.048
  • Vranic, (2019), Nanoscale, 11, pp. 13863, 10.1039/C9NR02301A
  • Esteban-Arranz, A., Arranz, M.Á., Morales, M., Martin-Folgar, R., and Álvarez-Rodríguez, J. (2021). Thickness of Graphene Oxide-Based Materials as a Control Parameter. ChemRxiv.
  • Arvidsson, (2013), Hum. Ecol. Risk Assess. Int. J., 19, pp. 873, 10.1080/10807039.2012.702039
  • Akhavan, (2012), Biomaterials, 33, pp. 8017, 10.1016/j.biomaterials.2012.07.040
  • Akhavan, (2010), ACS Nano, 4, pp. 5731, 10.1021/nn101390x
  • Liao, (2011), ACS Appl. Mater. Interfaces, 3, pp. 2607, 10.1021/am200428v
  • Liu, (2011), ACS Nano, 5, pp. 6971, 10.1021/nn202451x
  • Malhotra, N., Villaflores, O.B., Audira, G., Siregar, P., Lee, J.-S., Ger, T.-R., and Hsiao, C.-D. (2020). Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding. Molecules, 25.
  • Volkov, (2017), 2D Mater., 4, pp. 022001, 10.1088/2053-1583/aa5476
  • Jia, (2019), Environ. Pollut., 247, pp. 595, 10.1016/j.envpol.2019.01.072
  • Lu, (2017), Chemosphere, 184, pp. 795, 10.1016/j.chemosphere.2017.06.049
  • Achawi, S., Feneon, B., Pourchez, J., and Forest, V. (2021). Structure–Activity Relationship of Graphene-Based Materials: Impact of the Surface Chemistry, Surface Specific Area and Lateral Size on Their In Vitro Toxicity. Nanomaterials, 11.
  • Chen, (2021), Nanoscale Adv., 3, pp. 4166, 10.1039/D1NA00133G
  • OECD (2011). Guidelines for the Testing of Chemicals. Acute immobilisation. Chironomus sp., Organization for Economic Co-operation and Development (OECD). Test No. 235.
  • OECD (2010). Guidelines for the Testing of Chemicals. Sediment-Water Chironomid Life-Cycle Toxicity Test Using Spiked Water or Spiked Sediment, Organization for Economic Co-operation and Development (OECD). Test No. 233.
  • Sahandi, (2011), Adv. Environ. Sci., 3, pp. 268
  • Negri, (2022), Sci. Total Environ., 815, pp. 152465, 10.1016/j.scitotenv.2021.152465
  • Negri, (2019), Aquat. Toxicol., 209, pp. 42, 10.1016/j.aquatox.2019.01.017
  • Waissi, (2017), J. Hazard. Mater., 322, pp. 301, 10.1016/j.jhazmat.2016.04.015
  • Lv, (2018), Environ. Pollut., 234, pp. 953, 10.1016/j.envpol.2017.12.034
  • Kim, (2020), Neurotoxicology, 77, pp. 30, 10.1016/j.neuro.2019.12.011
  • Zhao, (2016), Nanotoxicology, 10, pp. 1469, 10.1080/17435390.2016.1235738
  • Soares, (2017), Colloids Surf. B Biointerfaces, 157, pp. 335, 10.1016/j.colsurfb.2017.05.078
  • Jasim, (2016), 2D Mater., 3, pp. 014006, 10.1088/2053-1583/3/1/014006
  • Rodrigues, (2018), 2D Mater., 5, pp. 035020, 10.1088/2053-1583/aac05c
  • Morales, (2013), Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 158, pp. 57, 10.1016/j.cbpc.2013.05.005
  • Chen, (2016), Aquat. Toxicol., 174, pp. 54, 10.1016/j.aquatox.2016.02.015
  • Zhang, (2017), Environ. Sci. Technol., 51, pp. 7861, 10.1021/acs.est.7b01922
  • Morales, (2014), Cell Stress Chaperones, 19, pp. 529, 10.1007/s12192-013-0479-y
  • Morales, (2020), Environ. Pollut., 265, pp. 114806, 10.1016/j.envpol.2020.114806
  • Morales, (2011), Comp. Biochem. Physiol. C Toxicol. Pharmacol., 153, pp. 150, 10.1016/j.cbpc.2010.10.003
  • Morales, (2012), Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 155, pp. 333, 10.1016/j.cbpc.2011.10.001
  • Sorvari, (2021), Environ. Pollut., 285, pp. 117462, 10.1016/j.envpol.2021.117462
  • (2017), Chemosphere, 169, pp. 485, 10.1016/j.chemosphere.2016.11.067
  • Aquilino, (2018), Environ. Pollut., 232, pp. 563, 10.1016/j.envpol.2017.09.088
  • (2019), Sci. Total Environ., 677, pp. 590, 10.1016/j.scitotenv.2019.04.364
  • Kristensen, (2003), Ecol. Lett., 6, pp. 1025, 10.1046/j.1461-0248.2003.00528.x
  • Bakthisaran, (2015), Biochim. Biophys. Acta Proteins Proteom., 1854, pp. 291, 10.1016/j.bbapap.2014.12.019
  • Morrow, (2015), Cell Stress Chaperones, 20, pp. 207, 10.1007/s12192-014-0561-0
  • Silva, (2021), Sci. Total Environ., 783, pp. 146981, 10.1016/j.scitotenv.2021.146981
  • Park, (2008), Chemosphere, 74, pp. 89, 10.1016/j.chemosphere.2008.09.041
  • Joly, (2010), J. Innate Immun., 2, pp. 238, 10.1159/000296508
  • Wang, (2014), Int. J. Oncol., 45, pp. 18, 10.3892/ijo.2014.2399
  • Bruey, (2000), Nat. Cell Biol., 2, pp. 645, 10.1038/35023595
  • Augustyniak, (2016), J. Hazard. Mater., 305, pp. 30, 10.1016/j.jhazmat.2015.11.021
  • Majchrzycki, (2015), Acta Phys. Pol. A, 127, pp. 540, 10.12693/APhysPolA.127.540
  • Dorstyn, (1999), J. Biol. Chem., 274, pp. 30778, 10.1074/jbc.274.43.30778
  • Lee, (2015), Biomed. Res. Int., 2015, pp. 485343
  • Cha, (2012), Chemosphere, 87, pp. 49, 10.1016/j.chemosphere.2011.11.054
  • Pelin, (2018), Nanoscale, 10, pp. 11820, 10.1039/C8NR02933D
  • Lammel, (2014), Aquat. Toxicol., 150, pp. 55, 10.1016/j.aquatox.2014.02.016
  • Srikanth, (2018), J. Appl. Toxicol., 38, pp. 504, 10.1002/jat.3557
  • Souza, (2018), Chemosphere, 190, pp. 218, 10.1016/j.chemosphere.2017.10.018
  • Chen, (2015), Nanotoxicology, 10, pp. 42
  • Brem, (2005), Nucleic Acids Res., 33, pp. 2512, 10.1093/nar/gki543
  • Hanssen-Bauer, A., Solvang-Garten, K., Akbari, M., and Otterlei, M. (2012). X-Ray Repair Cross Complementing Protein 1 in Base Excision Repair. Int. J. Mol. Sci., 13.
  • Guleria, (2016), DNA Repair., 39, pp. 1, 10.1016/j.dnarep.2015.12.009
  • IIJIMA, (2008), J. Radiat. Res., 49, pp. 451, 10.1269/jrr.08065
  • Barzilai, (2002), DNA Repair., 1, pp. 3, 10.1016/S1568-7864(01)00007-6
  • Wang, (2018), J. Cell Biol., 217, pp. 1915, 10.1083/jcb.201708007
  • Li, (2007), J. Biol. Chem., 282, pp. 37605, 10.1074/jbc.M704595200
  • Pieprzyk, (2018), Biol. Chem., 399, pp. 467, 10.1515/hsz-2017-0251
  • Komonyi, (2007), Cell Death Differ., 14, pp. 1181, 10.1038/sj.cdd.4402123
  • Theopold, (1995), Gene, 156, pp. 247, 10.1016/0378-1119(95)00019-3
  • Khan, (2017), J. Cell Sci., 130, pp. 2984