Pull-Out of Pristine and Functionalized Carbon Nanotubes from Cement: A Molecular Modelling Study

  1. Lado-Touriño, Isabel 1
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

Revista:
C - Journal of Carbon Research

ISSN: 2311-5629

Año de publicación: 2022

Volumen: 8

Número: 4

Páginas: 80

Tipo: Artículo

DOI: 10.3390/C8040080 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: C - Journal of Carbon Research

Resumen

Carbon nanotubes (CNTs) are widely used as reinforcements in cement-based composites. The improvement in the mechanical properties of the resulting materials depends on the characteristics of the interface formed between CNTs and the cement matrix. The experimental characterization of the interfacial properties of these composites is still limited and hard to achieve with currently available technologies. In this work, molecular dynamics and molecular mechanics pull-out simulations of pristine and functionalized CNTs, taken from a tobermorite crystal, were carried out to study interfacial shear strength (ISS) from an atomic perspective. ISS was calculated from the potential energy of the systems. The effects of the CNT diameter and the degree of functionalization on the pull-out process were analyzed according to the ISS and non-bonded energy results. The influence of H-bonding and electrostatic interactions between the CNT and the matrix were also studied. The results show that ISS decreases with increasing CNT radius for pristine CNTs and depends upon the number of H-bonds for functionalized CNTs. ISS values are positively correlated to Enon-bonded energy, which is related to the number of carboxyl groups on the CNT surface. A high degree of functionalization increases both the number of H-bonds and the number of Ca2+-O interactions between the CNT and the tobermorite surface. This results in a stronger interfacial interaction and, therefore, an elevated ISS value.

Información de financiación

This research received no external funding.

Referencias bibliográficas

  • Reales, (2017), Constr. Build. Mater., 154, pp. 697, 10.1016/j.conbuildmat.2017.07.232
  • Shi, (2019), Constr. Build. Mater., 202, pp. 290, 10.1016/j.conbuildmat.2019.01.024
  • Rocha, (2019), Constr. Build. Mater., 209, pp. 1, 10.1016/j.conbuildmat.2019.03.003
  • Makul, (2020), J. Clean Prod., 274, pp. 122899, 10.1016/j.jclepro.2020.122899
  • Metaxa, Z.S., Tolkou, A.K., Efstathiou, S., Rahdar, A., Favvas, E.P., Mitropoulos, A.C., and Kyzas, G.Z. (2021). Nanomaterials in Cementitious Composites: An Update. Molecules, 26.
  • Li, (2005), Carbon, 43, pp. 1239, 10.1016/j.carbon.2004.12.017
  • Li, (2007), Cem. Concr. Compos., 29, pp. 377, 10.1016/j.cemconcomp.2006.12.011
  • Gao, (2020), Constr. Build. Mater., 260, pp. 120452, 10.1016/j.conbuildmat.2020.120452
  • Gao, (2021), Constr. Build. Mater., 272, pp. 121664, 10.1016/j.conbuildmat.2020.121664
  • Adhikary, S.K., Rudžionis, Z., and Rajapriya, R. (2020). The Effect of carbon nanotubes on the flowability, mechanical, microstructural and durability properties of cementitious composite: An overview. Sustainability, 12.
  • Du, Y., Gao, P., Yang, J., Shi, F., and Shabaz, M. (2021). Experimental Analysis of Mechanical Properties and Durability of Cement-Based Composite with Carbon Nanotube. Adv. Mater. Sci. Eng., 2021.
  • Silvestro, L., Ruviaro, A., Lima, G., de Matos, P., de Azevedo, A.R.G., Monteiro, S.N., and Gleize, P. (2021). Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. Materials, 14.
  • Jongvivatsakul, (2022), Case Stud. Constr. Mater., 17, pp. e01407
  • Yu, (2017), Coupled Syst. Mech., 6, pp. 335
  • Qin, (2021), Cem. Concr. Res., 147, pp. 106517, 10.1016/j.cemconres.2021.106517
  • Sindu, (2020), Constr. Build. Mater., 253, pp. 119190, 10.1016/j.conbuildmat.2020.119190
  • Balasubramaniam, B., Mondal, K., Ramasamy, K., Palani, G.S., and Iyer, N.R. (2017). Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers, 5.
  • Sarvandani, (2021), J. Build. Eng., 41, pp. 102407, 10.1016/j.jobe.2021.102407
  • Balasubramanian, (2005), Small, 1, pp. 180, 10.1002/smll.200400118
  • Mallakpour, (2016), RSC Adv., 6, pp. 109916, 10.1039/C6RA24522F
  • Liu, (2005), Eur. Polym. J., 41, pp. 2693, 10.1016/j.eurpolymj.2005.05.017
  • Peng, (2003), J. Am. Chem. Soc., 125, pp. 15174, 10.1021/ja037746s
  • Kang, S.T., Seo, J.Y., and Park, S.H. (2015). The Characteristics of CNT/Cement Composites with Acid-Treated MWCNTs. Adv. Mater. Sci. Eng., 2015.
  • Ruan, (2018), Compos. Part A Appl. Sci. Manuf., 112, pp. 371, 10.1016/j.compositesa.2018.06.025
  • Yilmaz, (2002), J. Compos. Mater., 36, pp. 537, 10.1177/0021998302036005465
  • Zhao, (2010), Acta Mech. Sin., 26, pp. 113, 10.1007/s10409-009-0293-z
  • Zu, (2012), Carbon, 50, pp. 1271, 10.1016/j.carbon.2011.10.047
  • Battisti, (2014), Compos. Sci. Technol., 95, pp. 121, 10.1016/j.compscitech.2014.02.017
  • (2012), Compos. Sci. Technol., 72, pp. 1924, 10.1016/j.compscitech.2012.08.011
  • Chan, (2016), Int. J. Polym. Sci., 2016, pp. 7324975
  • Li, (2019), Compos. B Eng., 160, pp. 348, 10.1016/j.compositesb.2018.12.026
  • Liao, (2001), Appl. Phys. Lett., 79, pp. 4225, 10.1063/1.1428116
  • Chowdhury, (2007), Compos. Part A Appl. Sci. Manuf., 38, pp. 747, 10.1016/j.compositesa.2006.09.011
  • Li, (2011), Comput. Mater. Sci., 50, pp. 1854, 10.1016/j.commatsci.2011.01.029
  • Chandra, (2016), Compos. B Eng., 102, pp. 1, 10.1016/j.compositesb.2016.06.070
  • Chawla, (2017), Compos. Sci. Technol., 144, pp. 169, 10.1016/j.compscitech.2017.03.029
  • Fan, (2017), Comput. Mater. Sci., 139, pp. 56, 10.1016/j.commatsci.2017.07.034
  • Alkhateb, (2013), J. Nanomechanics Micromechanics, 3, pp. 67, 10.1061/(ASCE)NM.2153-5477.0000055
  • Eftekhari, (2016), Int. J. Impact. Eng., 82, pp. 78
  • Kai, (2019), Carbon, 146, pp. 181, 10.1016/j.carbon.2019.01.097
  • Lv, (2010), J. Phys. Chem. C, 114, pp. 6588, 10.1021/jp100110n
  • Shiu, (2014), Compos. B Eng., 56, pp. 691, 10.1016/j.compositesb.2013.09.007
  • Li, (2017), Compos. B Eng., 120, pp. 83, 10.1016/j.compositesb.2017.03.063
  • Nikkhah, (2015), Curr. Appl. Phys., 15, pp. 1188, 10.1016/j.cap.2015.07.007
  • Zhang, (2014), Carbon, 67, pp. 784, 10.1016/j.carbon.2013.10.078
  • Bauchy, (2014), J. Chem. Phys., 140, pp. 214503, 10.1063/1.4878656
  • Richardson, (2004), Cem. Concr. Res., 34, pp. 1733, 10.1016/j.cemconres.2004.05.034
  • Hou, (2017), Carbon, 115, pp. 188, 10.1016/j.carbon.2017.01.013
  • Allen, (2007), Nat. Mater., 6, pp. 311, 10.1038/nmat1871
  • Hoover, (1985), Phys. Rev. A, 31, pp. 1695, 10.1103/PhysRevA.31.1695
  • Berendsen, (1984), J. Chem. Phys., 81, pp. 3684, 10.1063/1.448118
  • (2022, November 21). Materials Studio Materials Modeling & Simulation Application|Dassault Systèmes BIOVIA. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/.
  • Sun, (1998), Comput. Theor. Polym. Sci., 8, pp. 229, 10.1016/S1089-3156(98)00042-7
  • Bhuvaneshwari, (2015), Curr. Sci., 108, pp. 1058
  • Du, (2018), Constr. Build. Mater., 164, pp. 103, 10.1016/j.conbuildmat.2017.12.200
  • Wu, (2010), Compos. Part B Eng., 41, pp. 543, 10.1016/j.compositesb.2010.06.005
  • Hajilar, (2015), Comput. Mater. Sci., 101, pp. 216, 10.1016/j.commatsci.2014.12.006
  • Tosi, (1964), Solid State Physics, Volume 16, pp. 1, 10.1016/S0081-1947(08)60515-9
  • Gou, (2004), Comput. Mater. Sci., 31, pp. 225, 10.1016/j.commatsci.2004.03.002
  • Sanchez, (2020), Constr. Build. Mater., 233, pp. 117237, 10.1016/j.conbuildmat.2019.117237
  • Sanchez, (2008), J. Colloid. Interface Sci., 323, pp. 349, 10.1016/j.jcis.2008.04.023
  • (2020), Int. J. Smart Nano Mater., 11, pp. 370, 10.1080/19475411.2020.1838966
  • Wang, (2014), J. Appl. Phys., 115, pp. 123520, 10.1063/1.4870170
  • Mani, (2022), Mater. Today Proc., 50, pp. 1774, 10.1016/j.matpr.2021.09.194
  • Lushnikova, (2017), J. Phys. Chem. Solids, 105, pp. 72, 10.1016/j.jpcs.2017.02.010
  • Katz, (1996), J. Am. Chem. Soc., 118, pp. 5752, 10.1021/ja953943i
  • Sowrey, (2004), Phys. Chem. Chem. Phys., 6, pp. 188, 10.1039/B311715D