Microstructure and Electrical Conductivity of Cement Paste Reinforced with Different Types of Carbon Nanotubes

  1. Páez-Pavón, Alicia 1
  2. García-Junceda, Andrea 2
  3. Galán-Salazar, Andrea 1
  4. Merodio-Perea, Rosario G. 1
  5. Sánchez del Río, José 23
  6. Lado-Touriño, Isabel 1
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Instituto IMDEA Materiales
    info

    Instituto IMDEA Materiales

    Getafe, España

    ROR https://ror.org/009s53a61

  3. 3 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

Revista:
Materials

ISSN: 1996-1944

Año de publicación: 2022

Volumen: 15

Número: 22

Páginas: 7976

Tipo: Artículo

DOI: 10.3390/MA15227976 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materials

Resumen

Over the last few years, the addition of small amounts of carbon nanotubes (CNTs) to construction materials has become of great interest, since it enhances some of the mechanical, electrical and thermal properties of the cement. In this sense, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively) can be incorporated into cement to achieve the above-mentioned improved features. Thus, the current study presents the results of the addition of SWCNTs and MWCNTs on the microstructure and the physical properties of the cement paste. Density was measured through He pycnometry and the mass change was studied by thermogravimetric analysis (TGA). The microstructure and the phases were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally, the electrical conductivity for different CNT concentrations was measured, and an exponential increase of the conductivity with concentration was observed. This last result opens the possibility for these materials to be used in a high variety of fields, such as space intelligent systems with novel electrical and electronic applications.

Referencias bibliográficas

  • Peyvandi, A.; Soroushian, P.; Abdol, N.; Balachandra, A.M. Surface-Modified Graphite Nanomaterials for Improved Reinforcement Efficiency in Cementitious Paste. Carbon 2013, 63, 175–186.
  • Alrekabi, S.; Cundy, A.; Lampropoulos, A.; Savina, I. Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2016, 10, 306–312.
  • Xu, S.; Liu, J.; Li, Q. Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cement Paste. Constr. Build. Mater. 2015, 76, 16–23.
  • Tian, X.; Hu, H. Test and Study on Electrical Property of Conductive Concrete. Procedia Earth Planet. Sci. 2012, 5 (Suppl. C), 83–87.
  • Yunchuan, Z.; Liang, B.; Shengyuan, Y.; Guting, C. Simulation Analysis of Mass Concrete Temperature Field. Procedia Earth Planet. Sci. 2012, 5 (Suppl. C), 5–12.
  • Konsta-Gdoutos, M.S.; Batis, G.; Danoglidis, P.A.; Zacharopoulou, A.K.; Zacharopoulou, E.K.; Falara, M.G.; Shah, S.P. Effect of CNT and CNF Loading and Count on the Corrosion Resistance, Conductivity and Mechanical Properties of Nanomodified OPC Mortars. Constr. Build. Mater. 2017, 147 (Suppl. C), 48–57.
  • Shang, Y.; Zhang, D.; Yang, C.; Liu, Y.; Liu, Y. Effect of Graphene Oxide on the Rheological Properties of Cement Pastes. Constr. Build. Mater. 2015, 96 (Suppl. C), 20–28.
  • Rashad, A.M. Effect of Carbon Nanotubes (CNTs) on the Properties of Traditional Cementitious Materials. Constr. Build. Mater. 2017, 153 (Suppl. C), 81–101.
  • Tzounis, L.; Liebscher, M.; Fuge, R.; Leonhardt, A.; Mechtcherine, V. P- and n-Type Thermoelectric Cement Composites with CVD Grown p- and n-Doped Carbon Nanotubes: Demonstration of a Structural Thermoelectric Generator. Energy Build. 2019, 191, 151–163.
  • Shao, H.; Chen, B.; Li, B.; Tang, S.; Li, Z. Influence of Dispersants on the Properties of CNTs Reinforced Cement-Based Materials. Constr. Build. Mater. 2017, 131 (Suppl. C), 186–194.
  • Cerro-Prada, E.; Pacheco-Torres, R.; Varela, F. Effect of Multi-Walled Carbon Nanotubes on Strength and Electrical Properties of Cement Mortar. Materials 2021, 14, 79.
  • Wang, H.; Gao, X.; Liu, J.; Ren, M.; Lu, A. Multi-Functional Properties of Carbon Nanofiber Reinforced Reactive Powder Concrete. Constr. Build. Mater. 2018, 187, 699–707.
  • Konsta-Gdoutos, M.S.; Aza, C.A. Self Sensing Carbon Nanotube (CNT) and Nanofiber (CNF) Cementitious Composites for Real Time Damage Assessment in Smart Structures. Cem. Concr. Compos. 2014, 53, 162–169.
  • Chaipanich, A.; Nochaiya, T.; Wongkeo, W.; Torkittikul, P. Compressive Strength and Microstructure of Carbon Nanotubes–Fly Ash Cement Composites. Mater. Sci. Eng. A 2010, 527, 1063–1067.
  • UNE EN 196-1:2005; Methods of Testing Cement. Part 1: Determination of Strength. AENOR: Madrid, Spain, 2005. Talayero, C.; Aït-Salem, O.; Gallego, P.; Páez-Pavón, A.; Merodio-Perea, R.G.; Lado-Touriño, I. Computational Prediction and Experimental Values of Mechanical Properties of Carbon Nanotube Reinforced Cement. Nanomaterials 2021, 11, 2997.
  • Páez Pavón, A.; Touriño, L.; Isabel, M.; Asenjo Álvarez, F.; Caballero Montes, J.A.; Cerpa Naranjo, A.; Galindo Muñoz, A.; Alanbari Ali Hassan, M.H.; García Junceda, A. Effect of Single-Walled Carbon Nanotubes on the Physical Properties of Cement Paste. In Proceedings of the ISER 174th International Conference, Barcelona, Spain, 5–8 November 2018; pp. 18–21.
  • Makar, J.; Margeson, J.; Luh, J. Carbon Nanotube/Cement Composites-Early Results and Potential Applications. In Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, BC, Canada, 22–24 August 2005; pp. 1–10.
  • Stynoski, P.; Mondal, P.; Marsh, C. Effects of Silica Additives on Fracture Properties of Carbon Nanotube and Carbon Fiber Reinforced Portland Cement Mortar. Cem. Concr. Compos. 2015, 55, 232–240.
  • Cui, H.; Yang, S.; Memon, S.A. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. Int. J. Mol. Sci. 2015, 16, 8027–8039.
  • Makar, J.M.; Chan, G.W. Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310.
  • Payá, J.; Monzó, J.; Borrachero, M.V.; Velázquez, S. Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R). Thermogravimetric Analysis Studies on FC3R-Portland Cement Pastes. Cem. Concr. Res. 2003, 33, 603–609.
  • Szeląg, M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials 2017, 7, 267.
  • Adhikary, S.K.; Rudžionis, Ž.; Rajapriya, R. The Effect of Carbon Nanotubes on the Flowability, Mechanical, Microstructural and Durability Properties of Cementitious Composite: An Overview. Sustainability 2020, 12, 8362.
  • Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique. Cem. Concr. Res. 2015, 73, 215–227.
  • Tragazikis, I.K.; Kordatou, T.Z.; Exarchos, D.A.; Dalla, P.T.; Matikas, T.E. Monitoring the Hydration Process in Carbon Nanotube Reinforced Cement-Based Composites Using Nonlinear Elastic Waves. Appl. Sci. 2021, 11, 1720.
  • Irshidat, M.R.; Al-Nuaimi, N.; Rabie, M. Influence of Carbon Nanotubes on Phase Composition, Thermal and Post-Heating Behavior of Cementitious Composites. Molecules 2021, 26, 850.
  • Fehervari, A.; MacLeod, A.J.N.; Garcez, E.O.; Aldridge, L.; Gates, W.P.; Yang, Y.; Collins, F. On the Mechanisms for Improved Strengths of Carbon Nanofiber-Enriched Mortars. Cem. Concr. Res. 2020, 136, 106178.
  • Chen, J.; Akono, A.-T. Influence of Multi-Walled Carbon Nanotubes on the Hydration Products of Ordinary Portland Cement Paste. Cem. ¡Concr. Res. 2020, 137, 106197.
  • Jang, S.-H.; Kawashima, S.; Yin, H. Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes. Materials 2016, 9, 220.
  • Yoo, D.-Y.; You, I.; Lee, S.-J. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors 2017, 17, 1064.
  • Dalla, P.T.; Dassios, K.G.; Tragazikis, I.K.; Exarchos, D.A.; Matikas, T.E. Carbon Nanotubes and Nanofibers as Strain and Damage Sensors for Smart Cement. Mater. Today Commun. 2016, 8, 196–204.
  • Jakubinek, M.B.; Johnson, M.B.; White, M.A.; Jayasinghe, C.; Li, G.; Cho, W.; Schulz, M.J.; Shanov, V. Thermal and Electrical Conductivity of Array-Spun Multi-Walled Carbon Nanotube Yarns. Carbon 2012, 50, 244–248.
  • Park, J.G.; Cheng, Q.; Lu, J.; Bao, J.; Li, S.; Tian, Y.; Liang, Z.; Zhang, C.; Wang, B. Thermal Conductivity of MWCNT/Epoxy Composites: The Effects of Length, Alignment and Functionalization. Carbon 2012, 50, 2083–2090.
  • Garcia-Macias, E.; D’Alessandro, A.; Castro-Triguero, R.; Pérez-Mira, D.; Ubertini, F. Micromechanics Modeling of the Electrical Conductivity of Carbon Nanotube Cement-Matrix Composites. Compos. Part B Eng. 2017, 108, 451–469.