Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies

  1. Merodio-Perea, Rosario G.
  2. Lado-Touriño, Isabel
  3. Páez-Pavón, Alicia
  4. Talayero, Carlos
  5. Galán-Salazar, Andrea
  6. Aït-Salem, Omar
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

Revista:
Materials

ISSN: 1996-1944

Año de publicación: 2022

Volumen: 15

Número: 21

Páginas: 7734

Tipo: Artículo

DOI: 10.3390/MA15217734 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materials

Resumen

Concrete is well known for its compression resistance, making it suitable for any kind of construction. Several research studies show that the addition of carbon nanostructures to concrete allows for construction materials with both a higher resistance and durability, while having less porosity. Among the mentioned nanostructures are carbon nanotubes (CNTs), which consist of long cylindrical molecules with a nanoscale diameter. In this work, molecular dynamics (MD) simulations have been carried out, to study the effect of pristine or carboxyl functionalized CNTs inserted into a tobermorite crystal on the mechanical properties (elastic modulus and interfacial shear strength) of the resulting composites. The results show that the addition of the nanostructure to the tobermorite crystal increases the elastic modulus and the interfacial shear strength, observing a positive relation between the mechanical properties and the atomic interactions established between the tobermorite crystal and the CNT surface. In addition, functionalized CNTs present enhanced mechanical properties.

Información de financiación

The authors want to thank Universidad Europea de Madrid for financial support

Referencias bibliográficas

  • Hawreen, (2018), Constr. Build. Mater., 168, pp. 459, 10.1016/j.conbuildmat.2018.02.146
  • Mohsen, (2019), J. Nanomater., 2019, pp. 6490984, 10.1155/2019/6490984
  • Kaur, (2020), IOP Conf. Ser. Mater. Sci. Eng., 814, pp. 012001, 10.1088/1757-899X/814/1/012001
  • Silvestro, (2020), Constr. Build. Mater., 264, pp. 120237, 10.1016/j.conbuildmat.2020.120237
  • Iijima, (1991), Nature, 354, pp. 56, 10.1038/354056a0
  • Li, Y., and Maruyama, S. Single-Walled Carbon Nanotubes: Preparation, Properties and Applications, 2019.
  • Manikandan, (2021), Mater. Today Proc., 47, pp. 4682, 10.1016/j.matpr.2021.05.543
  • Camilli, L., and Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors, 2018. 6.
  • Muhulet, (2018), Mater. Today Energy, 9, pp. 154, 10.1016/j.mtener.2018.05.002
  • Simon, J., Flahaut, E., and Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials, 2019. 12.
  • Annin, (2020), J. Appl. Mech. Tech. Phys., 61, pp. 834, 10.1134/S0021894420050193
  • Shi, (2019), Constr. Build. Mater., 202, pp. 290, 10.1016/j.conbuildmat.2019.01.024
  • Zhao, (2020), Nanotechnol. Rev., 9, pp. 349, 10.1515/ntrev-2020-0023
  • Du, (2020), Nanotechnol. Rev., 9, pp. 115, 10.1515/ntrev-2020-0011
  • Metaxa, Z.S., Tolkou, A.K., Efstathiou, S., Rahdar, A., Favvas, E.P., and Mitropoulos, A.C. Nanomaterials in Cementitious Composites: An Update. Molecules, 2021. 26.
  • Du, (2021), Adv. Mater. Sci. Eng., 2021, pp. 8777613, 10.1155/2021/8777613
  • Gamal, H.A., El-Feky, M.S., Alharbi, Y.R., Abadel, A.A., and Kohail, M. Enhancement of the Concrete Durability with Hybrid Nano Materials. Sustainability, 2021. 13.
  • Huang, (2012), Chin. Sci. Bull., 57, pp. 157, 10.1007/s11434-011-4879-z
  • Pirard, (2017), Front. Chem. Sci. Eng., 11, pp. 280, 10.1007/s11705-017-1635-1
  • Da Silva, E.E., Ladeira, L.O., Lacerda, R.G., De Oliveira, S., Ferlauto, A.S., Lorençon, E., and Ávila, E.D.S. Large Scale Production of Carbon Nanotubes in Portland Cement. U.S. Patent, 2015.
  • Jianguo, D., and Xiaopeng, A. Method for Dispersing Carbon Nanotubes in Cement-Based Material. 2017.
  • Jianlin, L., Qiuyi, L., Guolin, Z., and Chunwei, Z. Intelligent Concrete for GO (Graphene Oxide) Strengthened CNT (Carbon Nano Tube) Precoated Sand, Wireless Sensor and Preparation Method. 2017.
  • Al-Rub, (2012), J. Macromech. Micromech., 2, pp. 1, 10.1061/(ASCE)NM.2153-5477.0000041
  • Yan, X., Cui, H., Qin, Q., Tang, W., and Zhou, X. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste. Nanomaterals, 2016. 6.
  • Li, (2021), Constr. Build. Mater., 310, pp. 125262, 10.1016/j.conbuildmat.2021.125262
  • Murray, (2010), Transp. Res. Rec. J. Transp. Res. Board., 2142, pp. 75, 10.3141/2142-11
  • Fu, (2017), Mol. Sim., 44, pp. 285, 10.1080/08927022.2017.1373191
  • Mejia, (2020), Mater. Res. Express, 7, pp. 085011, 10.1088/2053-1591/abaf18
  • Sánchez, (2008), J. Colloid Interface Sci., 323, pp. 349, 10.1016/j.jcis.2008.04.023
  • Hou, (2018), Phys. Chem. Chem. Phys., 20, pp. 8773, 10.1039/C8CP00006A
  • Lushnikova, (2017), J. Phys. Chem. Solids, 105, pp. 72, 10.1016/j.jpcs.2017.02.010
  • Lushnikova, (2018), Constr. Build Mater., 172, pp. 86, 10.1016/j.conbuildmat.2018.03.244
  • Li, (2007), Cem. Concr. Compos., 29, pp. 337, 10.1016/j.cemconcomp.2006.12.011
  • Cwirzen, (2008), Adv. Cem. Res., 20, pp. 65, 10.1680/adcr.2008.20.2.65
  • Konsta-Gdoutos, (2010), Cem. Concr. Res., 40, pp. 1052, 10.1016/j.cemconres.2010.02.015
  • Balasubramaniam, B., Mondal, K., Ramasamy, K., Palani, G.S., and Iyer, N.R. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers, 2017. 5.
  • Yilmaz, (2022), J. Compos. Mater., 36, pp. 537, 10.1177/0021998302036005465
  • Zhao, (2010), Acta Mech. Sin., 26, pp. 113, 10.1007/s10409-009-0293-z
  • Zu, (2020), Carbon, 50, pp. 1271, 10.1016/j.carbon.2011.10.047
  • Battisti, (2014), Compos. Sci. Technol., 95, pp. 121, 10.1016/j.compscitech.2014.02.017
  • Rodríguez, (2012), Compos. Sci. Technol., 72, pp. 1924, 10.1016/j.compscitech.2012.08.011
  • Jean, (2016), Int. J. Polym. Sci., 2016, pp. 1, 10.1155/2016/7324975
  • Chandra, (2016), Compos. Part B Eng., 102, pp. 1, 10.1016/j.compositesb.2016.06.070
  • Chawla, (2017), Compos. Sci. Technol., 144, pp. 169, 10.1016/j.compscitech.2017.03.029
  • Fan, (2017), Comput. Mater. Sci., 139, pp. 56, 10.1016/j.commatsci.2017.07.034
  • Alkhateb, (2013), J. Macromech. Micromech., 3, pp. 67, 10.1061/(ASCE)NM.2153-5477.0000055
  • Merodio-Perea, (2020), Int. J. Smart Nano Mater., 11, pp. 370, 10.1080/19475411.2020.1838966
  • Talayero, C., Aït-Salem, O., Gallego, P., Páez-Pavón, A., Merodio-Perea, R.G., and Lado-Touriño, I. Computational Prediction and Experimental Values of Mechanical Properties of Carbon Nanotube Reinforced Cement. Nanomaterials, 2021. 11.
  • Zhao, (2021), Sci. Rep., 2021, pp. 1
  • Dassault Systèmes BIOVIA. 2022.
  • Hoover, (1985), Phys. Rev. A, 31, pp. 1695, 10.1103/PhysRevA.31.1695
  • Berendsen, (1998), J. Chem. Phys., 81, pp. 3684, 10.1063/1.448118
  • Sun, (1998), Comput. Theor. Polym. Sci., 8, pp. 229, 10.1016/S1089-3156(98)00042-7
  • Hajilar, S., and Shafei, B. Molecular Dynamics Simulation of Elastic Properties of Ordered CSH Gel: Case Study of Tobermorite and Jennite. Proceedings of the 5th International Symposium of Nanotechnology in Construction (NICOM-5).
  • Bhuvaneshwari, (2015), Curr. Sci., 108, pp. 1058
  • Li, (2012), Mater. Res. Innov., 16, pp. 338, 10.1179/1433075X11Y.0000000060
  • Hajilar, S., and Shafei, B. Molecular dynamics simulation of elastic properties of tobermorite family. Proceedings of the 4th RILEM International Symposium on Concrete Modeling (CONMOD 2014).
  • Hajilar, (2015), Comput. Mater. Sci., 101, pp. 216, 10.1016/j.commatsci.2014.12.006
  • Afsharhashemkhani, (2022), Int. Polym. Process., 37, pp. 176, 10.1515/ipp-2021-4182
  • Chung, (2004), J. Appl. Phys., 38, pp. 2535, 10.1063/1.1709944
  • Gou, (2004), Comput. Mater. Sci., 31, pp. 225, 10.1016/j.commatsci.2004.03.002
  • Arar, M. Elastic Properties of Cement Phases Using Molecular Dynamic Simulation. Master’s Thesis, 2016.
  • Eftekhari, (2016), Compos. Part A Appl. Sci. Manuf., 82, pp. 78, 10.1016/j.compositesa.2015.11.039
  • Sindu, (2020), Constr. Build. Mater., 253, pp. 119190, 10.1016/j.conbuildmat.2020.119190
  • Musso, (2009), Compos. Sci. Technol., 69, pp. 1985, 10.1016/j.compscitech.2009.05.002
  • Páez-Pavón, (2021), Int. J. Waste Resour., 11, pp. 398
  • Wang, (2017), Comput. Methods Appl. Mech. Eng., 319, pp. 393, 10.1016/j.cma.2017.02.026
  • Ramezani, (2022), Constr. Build. Mater., 315, pp. 125100, 10.1016/j.conbuildmat.2021.125100
  • Velez, (2001), Cem. Concr. Res., 31, pp. 555, 10.1016/S0008-8846(00)00505-6
  • Jennings, (2000), Cem. Concr. Res., 30, pp. 101, 10.1016/S0008-8846(99)00209-4
  • Yoshimura, (2007), Mater. Res., 10, pp. 127, 10.1590/S1516-14392007000200006
  • González-Teresa, (2010), Mater. Constr., 60, pp. 7, 10.3989/mc.2010.57010
  • Constantinides, (2004), Cem. Concr. Res., 34, pp. 67, 10.1016/S0008-8846(03)00230-8
  • Diop, M.B. Etude du Béton à L’échelle Mesoscopique: Simulation Numérique et Tests de Micro-Indentation. Ph.D. Thesis, 2014.
  • Kai, (2019), Carbon, 146, pp. 181, 10.1016/j.carbon.2019.01.097
  • Hou, (2017), Carbon, 115, pp. 188, 10.1016/j.carbon.2017.01.013
  • Al-Muhit, (2020), Constr. Build. Mater., 233, pp. 117237, 10.1016/j.conbuildmat.2019.117237