Feasibility and Efficacy of a Virtual Reality Game-Based Upper Extremity Motor Function Rehabilitation Therapy in Patients with Chronic Stroke: A Pilot Study

  1. Aguilera-Rubio, Ángela
  2. Cuesta-Gómez, Alicia
  3. Mallo-López, Ana
  4. Jardón-Huete, Alberto
  5. Oña-Simbaña, Edwin Daniel
  6. Alguacil-Diego, Isabel Mª
  1. 1 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

  2. 2 NeuroAvanza Neurological Physiotherapy Center
  3. 3 Universidad Carlos III de Madrid
    info

    Universidad Carlos III de Madrid

    Madrid, España

    ROR https://ror.org/03ths8210

Revista:
International Journal of Environmental Research and Public Health

ISSN: 1660-4601

Año de publicación: 2022

Volumen: 19

Número: 6

Páginas: 3381

Tipo: Artículo

DOI: 10.3390/IJERPH19063381 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Environmental Research and Public Health

Resumen

Background: The objective of the present study was to develop a virtual reality protocol based on activities of daily living and conventional rehabilitation, using Leap Motion Controller to improve motor function in upper extremity rehabilitation in stroke patients. At the same time, the purpose was to explore its efficacy in the recovery of upper extremity motor function in chronic stroke survivors, and to determine feasibility, satisfaction and attendance rate; Methods: A prospective pilot experimental clinical trial was conducted. The outcome measures used were the grip strength, the Action Research Arm Test (ARAT), the Block and Box Test (BBT), the Short Form Health Survey-36 Questionnaire, a satisfaction questionnaire and attendance rate; Results: Our results showed statistically significant changes in the variables grip strength, BBT and ARAT as well as high levels of satisfaction and attendance; Conclusions: This virtual reality platform represents an effective tool in aspects of upper extremity functionality rehabilitation in patients with chronic stroke, demonstrating feasibility and high levels of attendance and satisfaction. View Full-Text

Información de financiación

This research received no external funding.

Financiadores

Referencias bibliográficas

  • De Neurologia, S.E.; Grupo de Estudio de Enfermedades Cerebrovasculares. Sociedad Española de Neurología. El Atlas del Ictus España. 2019. Available online: https://www.sen.es/images/2020/atlas/Atlas_del_Ictus_de_Espana_version_web.pdf (accessed on 10 February 2021).
  • Tran, J.E.; Fowler, C.A.; Delikat, J.; Kaplan, H.; Merzier, M.M.; Schlesinger, M.R.; Litzenberger, S.; Marszalek, J.M.; Scott, S.L. Immersive Virtual Reality to Improve Outcomes in Veterans with Stroke: Protocol for a Single-Arm Pilot Study. JMIR Res. Protoc. 2021, 10, e26133.
  • Bui, J.; Luauté, J.; Farnè, A. Enhancing Upper Limb Rehabilitation of Stroke Patients with Virtual Reality: A Mini Review. Front. Virtual Real. 2021, 2, 146.
  • Cabeza, Á.S. Terapia Ocupacional Para la Rehabilitación del Control Motor; EAE Editorial Academia Espanola: Chisinau, Moldova, 2012.
  • Cheong, M.J.; Jeon, B.; Noh, S. A protocol for systematic review and meta- analysis on psychosocial factors related to rehabilitation motivation of stroke patients. Medicine 2020, 99, e23727.
  • Schuster-Amft, C.; Eng, K.; Suica, Z.; Thaler, I.; Signer, S.; Lehmann, I.; Schmid, L.; McCaskey, M.A.; Hawkins, M.; Verra, M.; et al. Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial. PLoS ONE 2018, 13, e0204455.
  • Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, 57–62.
  • Choi, Y.; Paik, N. Mobile Game-based Virtual Reality Program for Upper Extremity Stroke Rehabilitation. J. Vis. Exp. 2018, 133, e56241.
  • Szczepańska-Gieracha, J.; Cieślik, B.; Rutkowski, S.; Kiper, P.; Turolla, A. What can virtual reality offer to stroke patients? A narrative review of the literature. NeuroRehabilitation 2020, 47, 109–120.
  • Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Oña-Simbaña, E.D.; Martínez-Medina, A.; Ortiz-Comino, C.; Balaguer-Bernaldo-de-Quirós, C.; Cano-de-la-Cuerda, R. Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: Randomized controlled trial. J. Neuroeng. Rehabil. 2020, 17, 90.
  • Fernández-González, P.; Tejada, M.C.; Monge-Pereira, E.; Collado-Vázquez, S.; Baeza, P.S.-H.; Cuesta-Gómez, A.; Simbaña, E.D.O.; Huete, A.J.; Molina-Rueda, F.; De Quirós, C.B.-B.; et al. Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: A feasibility study. J. Neuroeng. Rehabil. 2019, 16, 133.
  • Niechwiej-Szwedo, E.; Gonzalez, D.; Nouredanesh, M.; Tung, J. Evaluation of the leap motion controller during the performance of visually-guided upper limb movements. PLoS ONE 2018, 13, e0193639.
  • Aguilera-Rubio, Á.; Alguacil-Diego, I.M.; Cuesta-Gómez, A. Uso del dispositivo Leap Motion Controller® en pacientes con ictus crónico. In XII Simposio CEA de Bioingeniería; Escuela Superior de Ciencias Experimentales y Tecnología URJC: Madrid, Spain, 2021; pp. 26–31.
  • Wee, S.K.; Hughes, A.M.; Warner, M.; Burridge, J.H. Trunk restraint to promote upper extremity recovery in stroke patients: A systematic review and meta-analysis. Neurorehabil. Neural Repair 2014, 28, 660–677.
  • Rueda, F.M.; Montero, F.M.R.; Torres, M.P.D.H.; Diego, I.M.A.; Sánchez, A.M.; Miangolarra, J.C. Análisis del movimiento de la extremidad superior hemiparética en pacientes con accidente cerebrovascular: Estudio piloto. Neurología 2012, 27, 343–347.
  • Cirstea, M.C.; Levin, M.F. Compensatory strategies for reaching in stroke. Brain 2000, 123, 940–953.
  • Pain, L.M.; Baker, R.; Richardson, D.; Agur, A.M.R. Effect of trunk-restraint training on function and compensatory trunk, shoulder and elbow patterns during post-stroke reach: A systematic review. Disabil. Rehabil. 2015, 37, 553–562.
  • De Oliveira Cacho, R.; Cacho, E.W.A.; Ortolan, R.L.; Cliquet, A.; Borges, G. Trunk restraint therapy: The continuous use of the harness could promote feedback dependence in poststroke patients. Medicine 2015, 94, e641.
  • Lima, R.C.; Teixeira-Salmela, L.; Michaelsen, S.M. Effects of trunk restraint in addition to home-based modified constraint-induced movement therapy after stroke: A randomized controlled trial. Int. J. Stroke 2012, 7, 258–264.
  • Greisberger, A.; Aviv, H.; Garbade, S.F.; Diermayr, G. Clinical relevance of the effects of reach-to-grasp training using trunk restraint in individuals with hemiparesis poststroke: A systematic review. J. Rehabil. Med. 2016, 48, 405–416.
  • Michaelsen, S.M.; Levin, M.F. Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: A controlled trial. Stroke 2004, 35, 1914–1919.
  • Thielman, G.; Kaminski, T.; Gentile, A.M. Rehabilitation of reaching after stroke: Comparing 2 training protocols utilizing trunk restraint. Neurorehabil. Neural Repair 2008, 22, 697–705.
  • Fess, E.M.C. Clinical Assessment Recommendations, 1st ed.; Garner, N.C., Ed.; American Society of Hand Therapists: Chicago, IL, USA, 1981.
  • Bertrand, A.M.; Mercier, C.; Bourbonnais, D.; Desrosiers, J.; Grave, D. Reliability of maximal static strength measurements of the arms in subjects with hemiparesis. Clin. Rehabil. 2007, 21, 248–257.
  • Platz, T.; Pinkowski, C.; Berlin, K.; Rehabilitation, N.; Universitatsmedizin, C. Reliability and validity of arm function assessment with standardized guidelines for the FugI-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005, 19, 404–411.
  • Yozbatiran, N.; Der-yeghiaian, L.; Cramer, S.C. A standardized approach to performing the action research arm test. Neurorehabil. Neural Repair 2008, 22, 78–90.
  • Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 1985, 39, 386–391.
  • Chen, H.; Chen, C.C.; Hsueh, I.; Huang, S.; Hsieh, C. Test-Retest Reproducibility and Smallest Difference of 5 Hand Function Tests in Patients with Stroke. Neurorehabil. Neural Repair 2009, 23, 435–440.
  • Ware, J.E., Jr.; Snow, K.K.; Kosinski, M.G.B. SF-36 Health Survey: Manual and Interpretation Guide; New England Medical Center: Boston, MA, USA, 1993.
  • Alonso, J.; Prieto, L.; Anto, J.M. The Spanish version of the SF-36 Health Survey (the SF-36 health questionnaire): An instrument for measuring clinical results. Med. Clin. 1995, 104, 771–776.
  • Cabral, D.L.; Damascena, C.G.; Faria, C.D.C.M.; Melo, P.G. Comparisons of the Nottingham Health Profile and the SF-36 health survey for the assessment of quality of life in individuals with chronic stroke. Braz. J. Phys. Ther. 2012, 16, 301–308.
  • Guti, R.O.; Gal, F.; Carlos, J.; Page, M. A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation 2013, 33, 545–554.
  • Ortiz-Gutiérrez, R.; Cano-de-la-Cuerda, R.; Galán-del-Río, F. A Telerehabilitation Program Improves Postural Control in Multiple Sclerosis Patients: A Spanish Preliminary Study. Int. J. Environ. Res. Public Health 2013, 10, 5697–5710.
  • Iosa, M.; Morone, G.; Fusco, A.; Castagnoli, M.; Fusco, F.R.; Pratesi, L.; Paolucci, S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: A feasibility pilot study. Top. Stroke Rehabil. 2015, 22, 306–316.
  • Vanbellingen, T.; Filius, S.J.; Nyffeler, T.; van Wegen, E.E.H. Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: A pilot study. Front. Neurol. 2017, 8, 654.
  • Ögün, M.N.; Kurul, R.; Yaşar, M.F.; Turkoglu, S.A.; Avci, Ş.; Yildiz, N. Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arq. Neuro-Psiquiatr. 2019, 77, 681–688.
  • Wang, Z.; Wang, P.; Xing, L.; Mei, L.; Zhao, J.; Zhang, T. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural Regen. Res. 2017, 12, 1823.
  • Colombo, R.; Raglio, A.; Panigazzi, M.; Mazzone, A.; Bazzini, G.; Imarisio, C.; Molteni, D.; Caltagirone, C.; Imbriani, M. The SonicHand Protocol for Rehabilitation of Hand Motor Function: A Validation and Feasibility Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 664–672.
  • Fluet, G.G.; Qiu, Q.; Patel, J.; Cronce, A.; Merians, A.S.; Adamovich, S.V. Autonomous Use of the Home Virtual Rehabilitation System: A Feasibility and Pilot Study. Games Health J. 2019, 8, 432–438.
  • Hatem, S.M.; Saussez, G.; Faille, M.; Prist, V.; Dan, B. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442.
  • Intercollegiate Stroke Working Party. National Clinical Guideline for Stroke, 3rd ed.; Royal College of Physicians: London, UK, 2008.
  • Teasell, R.W.; Murie Fernandez, M.; McIntyre, A.; Mehta, S. Rethinking the continuum of stroke rehabilitation. Arch. Phys. Med. Rehabil. 2014, 95, 595–596.
  • Aziz, N.A.; Leonardi-Bee, J.; Phillips, M.; Gladman, J.R.F.; Legg, L.; Walker, M.F. Therapy-based rehabilitation services for patients living at home more than one year after stroke. Cochrane Database of Systematic Reviews. Cochrane Database Syst. Rev. 2008, 2008, CD005952.
  • Aguilera-Rubio, Á.; Alguacil-Diego, I.M.; Mallo-López, A.; Cuesta-Gómez, A. Use of the Leap Motion Controller System in the Rehabilitation of the Upper Limb in Stroke. A Systematic Review. J. Stroke Cerebrovasc. Dis. 2022, 31, 106174.
  • Aramaki, A.L.; Sampaio, R.F.; Reis, A.C.S.; Cavalcanti, A.; Dutra, F.C.M.S.E. Virtual reality in the rehabilitation of patients with stroke: An integrative review. Arq. Neuro-Psiquiatr. 2019, 77, 268–278.
  • Rutkowski, S.; Kiper, P.; Cacciante, L.; Cieślik, B.; Mazurek, J.; Turolla, A.; Szczepańska-Gieracha, J. Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00121.
  • Knippenberg, E.; Verbrugghe, J.; Lamers, I.; Palmaers, S.; Timmermans, A.; Spooren, A. Markerless motion capture systems as training device in neurological rehabilitation: A systematic review of their use, application, target population and efficacy. J. Neuroeng. Rehabil. 2017, 14, 61.
  • Dabholkar, A.; Mehta, D.; Yardi, S.; Dabholkar, T. Assessment of scapular behavior in stroke patients. Int. J. Health Rehabil. Sci. 2015, 4, 95.
  • Adams, R.J.; Ellington, A.L.; Armstead, K.; Sheffield, K.; Patrie, J.T.; Diamond, P.T. Upper Extremity Function Assessment Using a Glove Orthosis and Virtual Reality System. OTJR 2019, 39, 81–89.
  • Stevens, E.; McKevitt, C.; Emmett, E.; Wolfe, C.D. El Impacto del Ictus en Europa [Internet]. ISBN 978-1-5272-0858-2. 2014, pp. 1–42. Available online: https://ictusfederacion.es/wp-content/uploads/2018/11/Informe-completo-compressed.pdf (accessed on 22 June 2021).
  • Lee, H.S.; Park, Y.J.; Park, S.W. The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2019, 2019, 7595639.