Optimización del conformado de una superaleación experimental

  1. Jaime Llaneza Fernández 1
  2. Arisbel Cerpa Naranjo 1
  3. Manuel Carsí 2
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Centro Nacional de Investigaciones Metalúrgicas
    info

    Centro Nacional de Investigaciones Metalúrgicas

    Madrid, España

    ROR https://ror.org/04m7z8d34

Journal:
Material-ES

ISSN: 2530-6405

Year of publication: 2018

Volume: 2

Pages: 37-40

Type: Article

More publications in: Material-ES

Abstract

In the present work, the conformation parameters of a superalloy with a high content of chromium and nickelare studied, introducing 0.9% of Ti and increasing the C up to 0.2% by mass. The resulting material presents amicrostructure of equiaxed grains of about 300 μm. After different thermomechanical treatments simulated with torsiontests, a grain refinement with sizes of about 6-10 μm with small TiC particles is observed. The high-temperaturemechanical properties of this alloy were studied by torsion tests at temperatures between 850 and 1200 ° C. The resultsof these tests were analyzed using the Garofalo equation. The values that were obtained for the Snedecor F and theregression coefficient guarantee the data can be correlated by a single equation. A value for the activation energy for theplastic deformation was found to be higher than the self-diffusion energy of the iron through the austenitic network andan exponent of the tension much higher than 5, which suggests that the deformation of the material is controlled bydislocation climb mechanism that quickly reaches the exponential zone.

Bibliographic References

  • [1] K. G. Brickner and 1. D. Defillippi: Handbook of Stainless Steels, eds. by D. Peckner ami I. M. Berstein, McGraw-Hill, New York, (1977), 20-1.
  • [2] E.Truman: Materials Science and Technology: A Comprehensive Treatment, Vol. 7-Constitution and Properties of Steels, ed. by F. B. Pickering, VCH VerlagsgeseUschaft mbH, Weinheim, (FRG), (1992), 527.
  • [3] H. 1. Harding and R. W. K. Honeycombe: J Iron Steel Inst., 204 (1966), 259.
  • [4] F. H. Froes and D. H. Warrington: Trans. Metall. Soc. A1ME, 245 (1969),2009.
  • [5] D. S. Fields and W. A. Backofen: Am. Soc. Test. Mater. Proc., 57 (1957),1259.
  • [6] C. García, M. Carsí, F. Peñalba y M.P. de Andrés. “Structure-Thermomechanical parameters relationship and Zener-Hollomon equation for two vanadium microalloyed steels”; J. Mater. Sci., 27, 17 (1992) 4567- 4576.
  • [7] M. Carsí, F.Peñalba, I. Rieiro,F. Zapirain y O.A. Ruano “Hot forging of aCu-Al-Ni-Fe-Mn alloy and its simulation by torsion testing”, Z. Metalkd. 91(2000) 1057-1062.
  • [8] M. Carsí, F. Peñalba, I. Rieiro, O. A. Ruano “High temperature workability behaviour of a modified P92steel”, Int. J. Mat. Res. (formerly Z. Metallkd.) 102 (2011) 11, 1378-1383.
  • [9] F.Garofalo “An empirical relation defining the stress dependence of minimum creep rate in metals” Transactions of The Metallurgical Society of Aime dec.1963 vol 227,1474-1477.
  • [10] H.J.McQueen, N.D.Ryan “Constitutive Analysis in Hot working”, Mat Sci and Eng A322 (20029 43-63
  • [11] I. Rieiro, Tesis Doctoral. Universidad Complutense, Madrid (Spain) Junio, 1997.