Tip-Shroud Labyrinth Seal Effect on the Flutter Stability of Turbine Rotor Blades

  1. Greco, Michele 12
  2. Vega, Almudena 1
  3. Corral, Roque 2
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Advanced Engineering Direction, Industria de Turbopropulsores S.A.U., Madrid 28108, Spain
Revista:
Journal of Turbomachinery

ISSN: 0889-504X 1528-8900

Año de publicación: 2019

Volumen: 141

Número: 10

Tipo: Artículo

DOI: 10.1115/1.4043962 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Turbomachinery

Resumen

The effect of the tip-shroud seal on the flutter onset of a shrouded turbine rotor blade, representative of a modern gas turbine, is numerically tested, and the contributions to the work per cycle of the aerofoil and the tip shroud are clearly identified. The numerical simulations are conducted using a linearized frequency-domain solver. The flutter stability of the shrouded rotor blade is evaluated for an edgewise mode and compared with the standard industrial approach of not including the tip-shroud cavity. It turns out that including the tip shroud significantly changes the stability prediction of the rotor blade. This is due to two facts. First, the amplitude of the unsteady pressure created in the inter-fin cavity due to the motion of the airfoil is much greater than that of the airfoil. The impact of this contribution increases with the frequency. Second, the effect of the outer shroud of the rotor blade, which usually is not included either in the simulations, has an opposite trend with the nodal diameter than the airfoil reducing the maximum and minimum damping. It is concluded that the combined effect of the seal and its platform tends to stabilize the edgewise mode of the rotor blade for all the examined nodal diameters and reduced frequencies. Finally, the numerical results are shown to be consistent with those obtained using an analytical simplified model to account for the effect of the labyrinth seals.

Referencias bibliográficas

  • 1. Shahpar, S., and Lapworth, L., 2003, “Padram: Parametric Design and Rapid Meshing System for Turbomachinery Optimization,” ASME Turbo Expo 2003, Atlanta, GA, June 16–19, Vol. 6, pp. 579–590, ASME Paper 2003-GT-38698. 10.1115/GT2003-38698
  • 2. Burgos, M., Chia, J., Corral, R., and Lopez, C., 2010, “Rapid Meshing of Turbomachinery Rows Using Semiunstructured Multi-Block Conformal Grids,” Eng. Comput., 26(4), pp. 351–363. 10.1007/s00366-009-0169-7
  • 3. Hall, K., and Lorence, C., 1993, “Calculation of Threedimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations,” ASME J. Turbomach., 114(4), pp. 800–809. 10.1115/1.2929318
  • 4. Sbardella, L., and Imregun, M., 2001, “Linearized Unsteady Viscous Turbomachinery Flows Using Hybrid Grids,” ASME J. Turbomach., 123(3), pp. 568–582. 10.1115/1.1371777
  • 5. Corral, R., Gallardo, J. M., and Vasco, C., 2007, “Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods,” ASME J. Turbomach., 129(1), pp. 72–83. 10.1115/1.2366512
  • 6. Besem, F. M., and Kielb, R. E., 2017, “Influence of the Tip Clearance on a Compressor Blade Aerodynamic Damping,” J. Propul. Power, 33(1), pp. 227–233. 10.2514/1.B36121
  • 7. Huang, X., He, L., and Bell, D., 2006, “An Experimental Investigation into Turbine Flutter Characteristic at Different Tip-Clearances,” ASME Turbo Expo 2006: Power for Land, Sea, and Air, American Society of Mechanical Engineers, Barcelona, Spain, May 8–11, pp. 1071–1080.
  • 8. Norryd, M., and Bölcs, A., 1998, “Experimental Investigation of Unsteady Pressure Behaviours in a Linear Turbine Cascade,” Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Springer, New York, pp. 103–116.
  • 9. Bölcs, A., and Fransson, T. H., 1986, “Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results,” Technical Report 13, Ecole Polytechnique Federale de Lausanne (Switzerland) Lab de Thermique Appliquee.
  • 10. Teixeira, M. A. M., Petrie-Repar, P., and Kameyama, S., 2015, “Tip Clearance Influence on Aeroelastic Stability of an Axial Turbine Blade Row,” ISUAAAT 14, Stockholm, Sweden, Sept. 8–11, pp. 201–210.
  • 11. Alford, J., 1964, “Protection of Labyrinth Seals From Flexural Vibration,” ASME J. Eng. Gas Turbines Power, 86(2), pp. 141–147. 10.1115/1.3677564
  • 12. Abbot, D. R., 1981, “Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312. 10.1115/1.3230721
  • 13. Mare, L. D., Imregun, M., Green, J., and Sayma, A. I., 2010, “A Numerical Study on Labyrinth Seal Flutter,” ASME J. Tribol., 132(2), p. 022201. 10.1115/1.3204774
  • 14. Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006. 10.1115/1.4041373
  • 15. Corral, R., Escribano, A., Gisbert, F., Serrano, A., and Vasco, C., 2003, “Validation of a Linear Multigrid Accelerated Unstructured Navier-Stokes Solver for the Computation of Turbine Blades on Hybrid Grids,” 9th AIAA/CEAS Aeroacoustics Conference, Hilton Head, SC, May 12–14, AIAA Paper 2003–3326.
  • 16. Burgos, M., Corral, R., and Contreras, J., 2011, “Efficient Edge Based Rotor/Stator Interaction Method,” AIAA J., 41(1), pp. 19–31. 10.2514/1.44512
  • 17. Corral, R., Gisbert, F., and Pueblas, J., 2017, “Efficient Execution of a Parallel Edged-Based Navier-Stokes Solver on Graphics Processing Units,” Int. J. Comp. Fluid Dyn., 31(2), pp. 1–16.
  • 18. Giles, M. B., 1990, “Non-Reflecting Boundary Conditions for Euler Equation Calculations,” AIAA J., 28(12), pp. 2050–2057. 10.2514/3.10521
  • 19. Corral, R., and Vega, A., 2016, “Physics of Vibrating Turbine Airfoils at Low Reduced Frequency,” AIAA J. Propul. Power, 32(2), pp. 325–336. 10.2514/1.B35572
  • 20. Vega, A., and Corral, R., 2016, “The Low Reduced Frequency Limit of Vibrating Airfoils - Part II: Numerical Experiments,” ASME J. Turbomach., 128(2), p. 021005. 10.1115/1.4031777
  • 21. Corral, R., Beloki, J., Calza, P., and Elliot, R., 2019, “Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig,” AIAA J., 57(2), pp. 782–795. 10.2514/1.J056943
  • 22. Palmer, T. R., Tan, C. S., Zuniga, H., Little, D., Montgomery, M., and Malandra, A., 2016, “Quantifying Loss Mechanisms in Turbine Tip Shroud Cavity Flows,” ASME J. Turbomach., 138(9), p. 091006. 10.1115/1.4032922
  • 23. Corral, R., and Vega, A., 2016, “The Low Reduced Frequency Limit of Vibrating Airfoils - Part I: Theoretical Analysis,” ASME J. Turbomach., 138(2), p. 021004. 10.1115/1.4031776
  • 24. Teixeira, M. A. M., and Kielb, R. E., 2017, “Tip Clearance Influence on Aerodynamic Damping Maps,” ETC12, Stockholm, Sweden, Apr. 3–7, ETC2017-300.
  • 25. Vega, A., and Corral, R., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part II: Physical Interpretation,” ASME J. Turbomach., 140(10), p. 121007. 10.1115/1.4041377