Conceptual Flutter Analysis of Stepped Labyrinth Seals

  1. Corral, Roque 1
  2. Greco, Michele 2
  3. Vega, Almudena 2
  1. 1 Advanced Engineering Direction, Industria de Turbopropulsores S.A.U., Madrid
  2. 2 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

Revista:
Journal of Engineering for Gas Turbines and Power

ISSN: 0742-4795 1528-8919

Año de publicación: 2020

Volumen: 142

Número: 7

Tipo: Artículo

DOI: 10.1115/1.4046419 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Engineering for Gas Turbines and Power

Resumen

A simple nondimensional model to describe the flutter onset of two-fin straight labyrinth seals (Corral and Vega, 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) is extended to stepped seals. The effect of the axial displacement of the seal is analyzed first in isolation. It is shown that this fundamental mode is always stable. In a second step, the combination of axial and torsion displacements is used to determine the damping of modes with arbitrary torsion centers. It is concluded that the classical Abbot's criterion stating that seals supported on the low-pressure side of the seal are stable provided that natural frequency of the mode is greater than the acoustic frequency breaks down under certain conditions. An analytical expression for the nondimensional work-per-cycle is derived and new nondimensional parameters controlling the seal stability identified. It is finally concluded that the stability of stepped seals can be assimilated to that of a straight through seal if the appropriate distance of the torsion center to the seal is chosen.

Referencias bibliográficas

  • 1. Chupp, R. , Hendricks, R. , Lattime, S. , and Steinetz, B. , 2006, “ Sealing in Turbomachinery,” AIAA J. Propul. Power, 22(2), pp. 313–349.10.2514/1.17778
  • 2. Alford, J. S. , 1971, “ Labyrinth Seal Designs Have Benefitted From Development and Service Experience,” SAE Paper No. 710435.10.4271/710435
  • 3. Alford, J. S. , 1975, “ Nature, Causes and Prevention of Labyrinth Air Seal Failures,” AIAA J. Aircr., 12(4), pp. 313–318.10.2514/3.44449
  • 4. Lewis, D. , Platt, C. , and Smith, E. , 1979, “ Aeroelastic Instability in f100 Labyrinth Air Seals,” AIAA J. Aircr., 16(7), pp. 484–490.10.2514/3.58552
  • 5. Alford, J. , 1964, “ Protection of Labyrinth Seals From Flexural Vibration,” ASME J. Eng. Gas Turbines Power, 86(2), pp. 141–147.10.1115/1.3677564
  • 6. Alford, J. , 1967, “ Protecting Turbomachinery From Unstable and Oscillatory Flows,” ASME J. Eng. Gas Turbines Power, 89(4), pp. 513–528.10.1115/1.3616719
  • 7. Ehrich, F. , 1968, “ Aeroelastic Instability in Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 90(4), pp. 369–374.10.1115/1.3609221
  • 8. Abbot, D. R. , 1981, “ Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention,” ASME J. Eng. Gas Turbines Power, 103(2), pp. 308–312.10.1115/1.3230721
  • 9. Zhuang, Q. , Bladh, R. , Munktell, E. , and Lee, Y. , 2019, “ Parametric Study on the Aeroelastic Stability of Rotor Seals,” J. Glob. Power Propuls. Soc., 3, pp. 569–579.10.33737/jgpps/110751
  • 10. Hirano, T. , Guo, Z. , and Kirk, R. G. , 2005, “ Application of Computational Fluid Dynamics Analysis for Rotating Machinery—Part II: Labyrinth Seal Analysis,” ASME J. Eng. Gas Turbines Power, 127(4), pp. 820–826.10.1115/1.1808426
  • 11. Mare, L. D. , Imregun, M. , Green, J. , and Sayma, A. I. , 2010, “ A Numerical Study on Labyrinth Seal Flutter,” ASME J Tribol., 132(2), p. 022201.10.1115/1.3204774
  • 12. Miura, T. , and Sakai, N. , 2019, “ Numerical and Experimental Studies of Labyrinth Seal Aeroelstic Instability,” ASME J. Eng. Gas Turbines Power, 141(11), p. 111005.10.1115/1.4044353
  • 13. Corral, R. , and Vega, A. , 2016, “ The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis,” ASME J. Turbomach, 138(2), p. 021004.10.1115/1.4031776
  • 14. Corral, R. , and Vega, A. , 2016, “ Physics of Vibrating Turbine Airfoils at Low Reduced Frequency,” AIAA J. Propul. Power, 32(2), pp. 325–336.10.2514/1.B35572
  • 15. Barbarossa, F. , Parry, A. B. , Green, J. S. , and di Mare, L. , 2016, “ An Aerodynamic Parameter for Low-Pressure Turbine Flutter,” ASME J. Turbomach, 138(5), p. 051001.10.1115/1.4032184
  • 16. Corral, R. , and Vega, A. , 2017, “ Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part I: Theoretical Support,” ASME J. Turbomach., 139(3), p. 031009.10.1115/1.4034976
  • 17. Vega, A. , and Corral, R. , 2016, “ The Low Reduced Frequency Limit of Vibrating Airfoils—Part II: Numerical Experiments,” ASME J. Turbomach., 128(2), p. 021005.10.1115/1.4031777
  • 18. Vega, A. , and Corral, R. , 2017, “ Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part II: Numerical Verification,” ASME J. Turbomach., 139(3), p. 031010.10.1115/1.4034978
  • 19. Corral, R. , and Vega, A. , 2018, “ Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006.10.1115/1.4041373
  • 20. Vega, A. , and Corral, R. , 2018, “ Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part II: Physical Interpretation,” ASME J. Turbomach., 140(10), p. 121007.10.1115/1.4041377
  • 21. Corral, R. , Beloki, J. , Calza, P. , and Elliot, R. , 2019, “ Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig,” AIAA J., 57(2), pp. 782–795.10.2514/1.J056943
  • 22. Corral, R. , Greco, M. , and Vega, A. , 2019, “ Tip-Shroud Labyrinth Seal Impact on the Flutter Stability of Turbine Rotor Blades,” ASME J. Turbomach., 141(10), p. 101006.10.1115/1.4043962