Forest Before Trees: Letter Stimulus and Sex Modulate Global Precedence in Visual Perception

  1. Álvarez-San Millán, Andrea 1
  2. Iglesias, Jaime 1
  3. Gutkin, Anahí 1
  4. Olivares, Ela I. 1
  1. 1 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

Revista:
Frontiers in Psychology

ISSN: 1664-1078

Año de publicación: 2021

Volumen: 12

Tipo: Artículo

DOI: 10.3389/FPSYG.2021.546483 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Frontiers in Psychology

Resumen

The global precedence effect (GPE), originally referring to processing hierarchical visual stimuli composed of letters, is characterised by both global advantage and global interference. We present herein a study of how this effect is modulated by the variables letter and sex. The Navon task, using the letters “H” and “S,” was administered to 78 males and 168 females (69 follicular women, 52 luteal women, and 47 hormonal contraceptive users). No interaction occurred between the letter and sex variables, but significant main effects arose from each of these. Reaction times (RTs) revealed that the letter “H” was identified more rapidly in the congruent condition both in the global and the local task, and the letter “S” in the incongruent condition for the local task. Also, although RTs showed a GPE in both males and females, males displayed shorter reaction times in both global and local tasks. Furthermore, luteal women showed higher d’ index (discrimination sensitivity) in the congruent condition for the local task than both follicular women and hormonal contraceptive users, as well as longer exploration time of the irrelevant level during the global task than males. We conclude that, according to the linear periodicity law, the GPE is enhanced for compound letters with straight vs. curved strokes, whereas it is stronger in males than in females. Relevantly, luteal phase of the menstrual cycle seems to tilt women to rely on finer grained information, thus exhibiting an analytical processing style in global/local visual processing.

Referencias bibliográficas

  • Agnew, H. C., Phillips, L. H., and Pilz, K. S. (2016). Global form and motion processing in healthy ageing. Acta Psychol. 166, 12–20. doi: 10.1016/j.actpsy.2016.03.005
  • Alameda, J. R., and Cuetos, F. (1995). Diccionario de Frecuencias de las Unidades Lingüísticas del Castellano. Oviedo: Servicio de Publicaciones de la Universidad de Oviedo.
  • Andres, A. J. D., and Fernandes, M. A. (2006). Effect of short and long exposure duration and dual-tasking on a global-local task. Acta Psychol. 122, 247–266. doi: 10.1016/j.actpsy.2005.12.002
  • Basso, M., and Lowery, N. (2004). Global-local visual biases correspond with visual-spatial orientation. J. Clin. Exp. Neuropsychol. 26, 24–30. doi: 10.1076/jcen.26.1.24.23939
  • Behrmann, M., Avidan, G., Marotta, J. J., and Kimchi, R. (2005). Detailed exploration of face-related processing in congenital prosopagnosia: 1. Behavioural findings. J. Cogn. Neurosci. 17, 1130–1149. doi: 10.1162/0898929054475154
  • Bentin, S., DeGutis, J. M., D’Esposito, M., and Robertson, L. C. (2007). Too many trees to see the forest: Performance, event-related potential, and functional magnetic resonance imaging manifestations of integrative congenital prosopagnosia. J. Cogn. Neurosci. 19, 132–146. doi: 10.1162/jocn.2007.19.1.132
  • Bruyer, R., Scailquin, J. C., and Samson, S. (2003). Aging and the locus of the global precedence effect: a short review and a new empirical data. Exp. Aging Res. 29, 237–268. doi: 10.1080/03610730303724
  • Busigny, T., and Rossion, B. (2011). Holistic processing impairment can be restricted to faces in acquired prosopagnosia: evidence from the global/local Navon effect. J. Neuropsychol. 5, 1–14. doi: 10.1348/174866410X500116
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioural Sciences, 2nd Edn. Mahwah, NJ: Erlbaum.
  • Dabbs, J. M. Jr., and de La Rue, D. (1991). Salivary testosterone measurements among women: relative magnitude of circadian and menstrual cycles. Horm. Res. 35, 182–184. doi: 10.1159/000181899
  • Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity and number magnitude. J. Exp. Psychol. Gen. 122, 371–396. doi: 10.1037/0096-3445.122.3.371
  • Derryberry, D., and Reed, M. A. (1998). Anxiety and attentional focusing: trait, state and hemispheric influences. Pers. Indiv. Differ. 25, 745–761. doi: 10.1016/S0191-8869(98)00117-2
  • Dodd, M. D., Van der Stigchel, S., Leghari, M. A., Fung, G., and Kingstone, A. (2008). Attentional SNARC: there’s something special about numbers (let us count the ways). Cognition 108, 810–818. doi: 10.1016/j.cognition.2008.04.006
  • Duchaine, B., Germine, L., and Nakayama, K. (2007a). Family resemblance: ten family members with prosopagnosia and within-class object agnosia. Cogn. Neuropsychol. 24, 419–430. doi: 10.1080/02643290701380491
  • Duchaine, B., Yovel, G., and Nakayama, K. (2007b). No global processing deficit in the Navon task in 14 developmental prosopagnosics. Scan 2, 104–113. doi: 10.1093/scan/nsm003
  • Evert, D. L., and Kmen, M. (2003). Hemispheric asymmetries for global and local processing as a function of stimulus exposure duration. Brain Cogn. 51, 115–142. doi: 10.1016/S0278-2626(02)00528-6
  • Fehring, R. J., Schneider, M., and Raviele, K. (2006). Variability in the phases of the menstrual cycle. J. Obstetr. Gynaecol. Neonatal Nurs. 35, 376–384. doi: 10.1111/j.1552-6909.2006.00051.x
  • Flevaris, A. V., Martínez, A., and Hillyard, S. A. (2014). Attending to global versus local stimulus features modulates neural processing of low versus high spatial frequencies: an analysis with event-related brain potentials. Front. Psychol. 5:277. doi: 10.3389/fpsyg.2014.00277
  • Gable, P. A., Poole, B. D., and Cook, M. S. (2013). Asymmetrical hemisphere activation enhances global-local processing. Brain Cogn. 83, 337–341. doi: 10.1016/j.bandc.2013.09.012
  • Gerlach, C., and Starrfelt, R. (2018). Global precedence effect account for individual differences in both face and object recognition performance. Psychon. Bull. Rev. 25, 1365–1372. doi: 10.3758/s13423-018-1458-1
  • Gevers, W., Reynvoet, B., and Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition 87, B87–B95. doi: 10.1016/S0010-0277(02)00234-2
  • Giersch, A., Boucart, M., and Danion, J.-M. (1997). Lorazepam, a benzodiazepine, induces an atypical distractor effects with compound stimuli: a role for line-ends in the processing of compound letters. Vis. Cogn. 4, 337–372. doi: 10.1080/713756768
  • Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics. Hoboken, NJ: John Wiley.
  • Grice, G. R., Canham, L., and Boroughs, J. M. (1983). Forest before trees? It depends where you look. Percept. Psychophys. 33, 121–128. doi: 10.3758/BF03202829
  • Grigas, G., and Juškevičienė, A. (2018). Letter frequency analysis of languages using latin alphabet. Int. Linguis. Res. 1, 18–31. doi: 10.30560/ilr.v1n1p18
  • Herrera, A. Y., Wang, J., and Mather, M. (2019). The gist and details of sex differences in cognition and the brain: how parallels in sex differences across domains are shaped by the locus coeruleus and catecholamine systems. Prog. Neurobiol. 176, 120–133. doi: 10.1016/j.pneurobio.2018.05.005
  • Hills, P. J., and Lewis, M. B. (2009). A spatial frequency account of the detriment that local processing of Navon letter has on face recognition. J. Exp. Psychol. Hum. Percept. Perform. 35, 1427–1442. doi: 10.1037/a0015788
  • Iglesias-Fuster, J., Santos-Rodríguez, Y., Trujillo-Barreto, N., and Valdés-Sosa, M. J. (2015). Asynchronous presentation of global and local information reveals effects of attention on brain electrical activity specific to each level. Front. Psychol. 5:1570. doi: 10.3389/fpsyg.2014.01570
  • Kimchi, R. (2015). “The perception of hierarchical structure,” in Oxford Handbook of Perceptual Organization, ed. J. Wagemans (Oxford: Oxford University Press), 129–149.
  • Kimchi, R., and Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. J. Exp. Psychol. Hum. Percept. Perform. 8, 521–535. doi: 10.1037/0096-1523.8.4.521
  • Kinchla, R. A. (1974). Detecting target elements in multielement array: a confusability model. Percept. Psychophys. 15, 149–158. doi: 10.3758/BF03205843
  • Kinchla, R. A., and Wolfe, J. M. (1979). The order of visual processing: ‘Top-Down’, ‘Bottom-up’, ‘or middle-out’. Percept. Psychophys. 25, 225–231. doi: 10.3758/BF03202991
  • Lachmann, T., Schmitt, A., Braet, W., and van Leeuwen, C. (2014). Letters in the Forest: Global precedence effect disappears for letters but not for non-letters under reading-like conditions. Front. Psychol. 5:705. doi: 10.3389/fpsyg.2014.00705
  • Lamb, M. R., and Robertson, L. (1988). The processing of hierarchical stimuli: effects of retinal locus, location uncertainty, and stimulus identity. Percept. Psychophys. 44, 172–181. doi: 10.3758/BF03208710
  • Lamb, M. R., and Robertson, L. (1989). Do response time advantage and interference reflect the order of processing of global and local level information? Percept. Psychophys. 46, 254–258. doi: 10.3758/BF03208087
  • Lamb, M. R., and Robertson, L. (1990). The effect of visual angle on global and local reaction times depends on the set of visual angles presented. Percept. Psychophys. 47, 489–496. doi: 10.3758/BF03208182
  • Lamb, M. R., Robertson, L. C., and Knight, R. T. (1990). Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions. J. Exp. Psychol. Learn. Mem. Cogn. 16, 471–483. doi: 10.1037/0278-7393.16.3.471
  • Lee, J., Chung, D., Chang, S., Kim, S., Kim, S.-W., Park, H., et al. (2012). Gender differences revealed in the right posterior temporal areas during Navon letter identification tasks. Brain Imag. Behav. 6, 387–396. doi: 10.1007/s11682-012-9153-8
  • Luna, D. (1993). Effects of exposure duration and eccentricity of global and local information on processing dominance. Eur. J. Cogn. Psychol. 5, 183–200. doi: 10.1080/09541449308520115
  • Lux, S., Marshall, J. C., Thimm, M., and Fink, G. R. (2008). Differential processing of hierarchical visual stimuli in young and older healthy adults: implications for pathology. Cortex 44, 21–28. doi: 10.1016/j.cortex.2005.08.001
  • MacMillan, N. A., and Creelman, C. D. (2005). Detection Theory, 2nd Edn. Mahwah, NJ: Lawrence.
  • Martin, M. (1979a). Local and global processing: role of sparsity. Mem. Cogn. 7, 476–484. doi: 10.3758/BF03198264
  • Martin, M. (1979b). Hemispheric specialization for local and global processing. Neuropsychologia 17, 33–40. doi: 10.1016/0028-3932(79)90019-8
  • Meyer, D. E., Irwin, D. E., Osman, A. M., and Kounios, J. (1988). The dynamics of cognition and action: mental processes inferred from speed accuracy decomposition. Psychol. Rev. 95, 183–237. doi: 10.1037/0033-295X.95.2.183
  • Modigliani, V., Bernstein, D., and Govorkov, S. (2001). Attention and size in a global/local task. Acta Psychol. 108, 35–51. doi: 10.1016/S0001-6918(00)00070-6
  • Müller-Oehring, E. M., Schulte, T., Raassi, C., Pfefferbaum, A., and Sullivan, E. V. (2007). Local–global interference is modulated by age, sex and anterior corpus callosum size. Brain Res. 1142, 189–205. doi: 10.1016/j.brainres.2007.01.062
  • Navon, D., and Norman, J. (1983). Does global precedence reality depend on visual angle? J. Exp. Psychol. Hum. Percept. Perform. 9, 955–965. doi: 10.1037/0096-1523.9.6.955
  • Navon, N. (1977). Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9, 353–383. doi: 10.1016/0010-0285(77)90012-3
  • Navon, N. (1981). The forest revisited: more on global precedence. Psychol. Res. 43, 1–32. doi: 10.1007/BF00309635
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4
  • Paquet, L., and Merikle, P. M. (1984). Global precedence: the effect of exposure duration. Can. J. Psychol. 38, 45–53. doi: 10.1037/h0080783
  • Pardo, A., and San Martín, R. (2015). Análisis de Datos en Ciencias Sociales y de la salud II, 2nd Edn. Madrid: Síntesis.
  • Pike, C. J. (2017). Sex and the development of Alzheimer’s disease. J. Neurosci. Res. 95, 671–680. doi: 10.1002/jnr.23827
  • Pletzer, B., and Harris, T. (2018). Sex hormones modulate the relationship between global advantage, lateralization, and interhemispheric connectivity in a Navon Paradigm. Brain Connect. 8, 106–118. doi: 10.1089/brain.2017.0504
  • Pletzer, B., Petasis, O., and Cahill, L. (2014). Switching between forest and trees: opposite relationship of progesterone and testosterone to global–local processing. Horm. Behav. 66, 257–266. doi: 10.1016/j.yhbeh.2014.05.004
  • Pletzer, B., Scheuringer, A., and Scherndl, T. (2017). Global-local processing relates to spatial and verbal processing: implications for sex differences in cognition. Sci. Rep. 7:10575. doi: 10.1038/s41598-017-11013-6
  • Poirel, N., Pineau, A., and Mellet, E. (2008). What does the nature of the stimuli tell us about the Global Precedence Effect? Acta Psychol. 127, 1–11. doi: 10.1016/j.actpsy.2006.12.001
  • Razumnikova, O., and Volf, N. (2011). Information processing specialization during interference between global and local aspects of visual hierarchical stimuli in men and women. Fiziol. Cheloveka 37, 14–19. doi: 10.1134/S0362119711020186
  • Reed, B. G., and Carr, B. R. (2018). “The normal menstrual cycle and the control of ovulation,” in Endotext, eds K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dungan, et al. (South Dartmouth, MA: MDText.com, Inc).
  • Rezvani, Z., Katanforoush, A., and Pouretemad, H. (2020). Global precedence changes by environment: a systematic review and meta-analysis on effect of perceptual field variables on global-local visual processing. Attent. Percept. Psychophys. 82, 2348–2359. doi: 10.3758/s13414-020-01997-1
  • Roalf, D., Lowery, N., and Turetsky, B. I. (2006). Behavioural and physiological findings of gender differences in global-local visual processing. Brain Cogn. 60, 32–42. doi: 10.1016/j.bandc.2005.09.008
  • Roux, F., and Ceccaldi, M. (2001). Does aging affect the allocation of visual attention in global and local information processing? Brain Cogn. 46, 383–396. doi: 10.1006/brcg.2001.1296
  • Santiago, J., Román, A., and Ouellet, M. (2011). “Flexible foundations of abstract thought: a review and a theory,” in Spatial Dimensions of Social Thought, eds A. Maass and T. W. Schubert (Berlin: Mouton de Gruyter), 41–110.
  • Scheuringer, A., and Pletzer, B. (2016). Sex differences in the Kimchi-Palmer task revisited: global reaction times, but nor number of global choices differ between adult men and women. Physiol. Behav. 165, 159–165. doi: 10.1016/j.physbeh.2016.07.012
  • Schmitt, A., Lachmann, T., and van Leeuwen, C. (2019). Lost in the forest? Global to local interference depends on children’s reading skills. Acta Psychol. 193, 11–17. doi: 10.1016/j.actpsy.2018.12.003
  • Slavin, M. J., Matting, J. B., Bradshaw, J. L., and Storey, E. (2002). Local-global processing in Alzheimer’s disease: an examination of interference, inhibition and priming. Neuropsychologia 40, 1173–1186. doi: 10.1016/S0028-3932(01)00225-1
  • Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., and Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto: Consulting Psychologists Press.
  • Staudinger, M. R., Fink, G. R., Mackay, C. E., and Lux, S. (2011). Gestalt perception and the decline of global precedence in older subjects. Cortex 47, 854–862. doi: 10.1016/j.cortex.2010.08.001
  • Uttal, W. R. (1975). An Autocorrelation Theory of Form Detection. Mahwah, NJ: Erlbaum.
  • Valdés-Sosa, M., Ontivero-Ortega, M., Iglesias-Fuster, J., Lage-Castellano, A., Gong, J., Luo, C., et al. (2020). Objects seen as scenes: Neural circuitry for attending whole or parts. NeuroImage 210:116526. doi: 10.1016/j.neuroimage.2020.116526
  • Voyer, D., Voyer, S., and Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol. Bull. 117, 250–250. doi: 10.1037/0033-2909.117.2.250
  • Yovel, G., Yovel, I., and Levi, J. (2001). Hemispheric asymmetries for global and local visual perception: effects of stimulus and task factors. J. Exp. Psychol. Hum. Percept. Perform. 27, 1369–1385. doi: 10.1037/0096-1523.27.6.1369