Controlled Rate Thermal Analysis (CRTA) as New Method to Control the Specific Surface in Hydroxyapatite Thin Coatings

  1. Peón, E. 12
  2. García-Galván, F.R. 1
  3. El Hadad, A. 13
  4. Jiménez-Morales, A. 4
  5. Galvan, J.C. 1
  1. 1 Centro Nacional de Investigaciones Metalúrgicas
    info

    Centro Nacional de Investigaciones Metalúrgicas

    Madrid, España

    ROR https://ror.org/04m7z8d34

  2. 2 Universidad de La Habana
    info

    Universidad de La Habana

    La Habana, Cuba

    ROR https://ror.org/04204gr61

  3. 3 Al Azhar University
    info

    Al Azhar University

    Cairo, Egipto

    ROR https://ror.org/05fnp1145

  4. 4 Universidad Carlos III de Madrid
    info

    Universidad Carlos III de Madrid

    Madrid, España

    ROR https://ror.org/03ths8210

Libro:
Modern Technologies for Creating the Thin-film Systems and Coatings

Año de publicación: 2017

Tipo: Capítulo de Libro

DOI: 10.5772/66468 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The control of the texture in synthetic hydroxyapatite ceramics had limited their application in the field of the materials for bone implantation, even more when it is used as a filling in cements and other formulations in orthopedic surgery. The present article shows preliminary results demonstrating the effectiveness of a modification of the controlled rate thermal analysis (CRTA), developed by J. Rouquerol, used for the preparation of ceramic materials with controlled textural characteristics, during the formation of ceramic powders of synthetic hydroxyapatite at low temperatures. The thermal treatments of the hydroxyapatite were carried out in a device connected to a computer, to control temperature and pressure system, keeping the decomposition speed constant. Results, reported when preparing ceramic powders of hydroxyapatite at 300 and 850°C under controlled pressure, using synthetic hydroxyapatite with a Ca/P molar ratio equal to 1.64, were checked using IR spectroscopy and X‐ray diffraction, showed that the formed phase corresponds to that of crystalline hydroxyapatite, even at 300°C of maximum temperature. Values of specific surface (BET) between 17 and 66 m2/g, with pore size in the range of 50–300 Å in both cases are obtained by N2 absorption isotherms, when analyzing the isotherms of nitrogen absorption.

Referencias bibliográficas

  • 1. M. Jarcho, “Calcium phosphate ceramics as hard tissue prosthetics”, Clinical Orthopaedic, Vol. 157, pp. 259–278, 1981.
  • 2. K. De Groot, Bioceramics of Calcium Phosphate, CDC Press, Inc. Boca Raton, FL, 1983.
  • 3. J. Black, Orthopaedic Biomaterials in Research and Practice, Churchill Livingstone Ed., New York, 1988.
  • 4. J. B. Park, D. Joseph (Eds.), Biomaterials: Principles and Applications, CRC Press, Bronzino, 2003.
  • 5. K. I. Humear, A. D. Séller, R. G. Slighter, S. S. Rothstein, H. P. Drobeck, “Tissue response in dogs to dense HA implantation in the femur”, Journal Oral Maxillofacial Surgery, Vol. 44, pp. 618–627, 1986.
  • 6. M. Sadat‐Shojai, M. T Khorasani, E. Dinpanah‐Khoshdargi, A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures”, Acta Biomaterialia, Vol. 9, Iss. 8, pp. 7591–7621, 2013.
  • 7. A. Kumar Nayak, “Hydroxyapatite synthesis methodologies: An overview”, Journal of ChemTech Research, Vol. 2, Iss. 2, pp. 903–907, 2010.
  • 8. F. Sun, H. Zhou, J. Lee, “Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration”, Acta Biomaterialia, Vol. 7, Iss. 11, pp. 3813–3828, 2011.
  • 9. N. Farahiyah Mohammad, R. Othman Fei Yee‐Yeoh, “Nanoporous hydroxyapatite preparation methods for drug delivery applications”, Reviews on Advanced Materials Science, Vol. 38, pp. 138–147, 2014.
  • 10. A. Shavandi, A. El‐Din, A. Bekhit, Z. Fa Sun, A. Ali, “A review of synthesis methods, properties and use of hydroxyapatite as a substitute of bone”, Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 25, pp. 98–117, 2015.
  • 11. S. Catros, J. C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amédée, F Guillemot, “Laser‐assisted bioprinting for creating on‐demand patterns of human osteoprogenitor cells and nano‐hydroxyapatite” Biofabrication, Vol. 3, Iss 2, p. 025001, 2011.
  • 12. K. Mensah‐Darkwa, R. K. Gupta, D. Kumar, “Fabrication and characterization of hydroxyapatite‐magnesium composite thin films on magnesium plates for implant applications”, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Vol. 3, Iss. Parts A, B, and C, pp. 717–722, 2012.
  • 13. K. Mensah‐Darkwa, R.K. Gupta, D. Kumar, “Mechanical and corrosion properties of magnesium‐hydroxyapatite (Mg‐HA) composite thin films”, Journal of Materials Science & Technology, Vol. 29, Iss. 9, pp. 788–794, 2013.
  • 14. M. A. Surmeneva, E. A. Chudinova, I. Y. Grubova, O. S. Korneva, I. A. Shulepov, A.D. Teresov, N. N. Koval, J. D. Mayer, C. Oehr, R. A. Surmenev, “Effect of pulsed electron beam treatment on the physico‐mechanical properties of hydroxyapatite‐coated titanium”, Ceramics International, Vol. 42, Iss. 1, pp. 1470–1475, 2016.
  • 15. Z. Janićijević, M. J. Lukić, L. Veselinović, “Alternating current electric field modified synthesis of hydroxyapatite bioceramics”, Materials & Design, Vol. 109, pp. 511–519, 2016.
  • 16. V. Nelea, C. Morosanu, M. Iliescu, I. N. Mihailescu, “Hydroxyapatite thin films grown by pulsed laser deposition and radio‐frequency magnetron sputtering: Comparative study”, Applied Surface Science, Vol. 228, Iss. 1–4, pp. 346–356, 2014.
  • 17. T. Mukhametkaliyev, M. Surmeneva, R. Surmenev, B. K. Mathan, “Hydroxyapatite coating on biodegradable AZ31 and Mg‐Ca alloys prepared by RF‐magnetron sputtering”, AIP Conference Proceeding, Vol. 1688, p. 030006, 2015.
  • 18. S. W. K. Kweha, K. A. Khora, P. Cheang, “The production and characterization of hydroxyapatite (HA) powders”, Journal of Materials Processing Technology, Vol. 89–90, pp. 373–377, 1999.
  • 19. S. Madhavi, C. Ferraris, T. J. White, “Synthesis and crystallization of macroporous hydroxyapatite”, Journal of Solid State Chemistry, Vol. 178, pp. 2838–2845, 2005.
  • 20. C. Balazsi, F. Weber, Z. Kover, E. Horvath, C. Nemeth, “Preparation of calcium‐phosphate bioceramics from natural resources”, Journal of the European Ceramic Society, Vol. 27, pp. 1601–1606, 2007.
  • 21. A. A. El Hadad, V. Barranco, A. Jiménez‐Morales, E. Peon, J. C. Galván, “Multifunctional sol‐gel derived thin film based on nanocrystaline hydroxyapatite powders”, Journal of Physics: Conference Series, Vol. 252 (1), Art. No. 012007, 2010.
  • 22. M. Vila, I. Izquierdo‐Barba, A. Bourgeois, M. Vallet‐Regí, “Bimodal meso/macro porous hydroxyapatite coatings”, Journal of Sol‐Gel Science and Technology, Vol. 57, pp. 109–113, 2011.
  • 23. C. Balazsi, F. Weber, Z. Kover, E. Horvath, C. Nemeth, “Preparation of calcium‐phosphate bioceramics from natural resources”, Journal of the European Ceramic Society, Vol. 27, pp. 1601–1606, 2007.
  • 24. D. K. Pattanayak, R. Dash, R. C. Prasad, B. T. Rao, T. R. Rama Mohan, “Synthesis and sintered properties evaluation of calcium phosphate ceramics”, Materials Science and Engineering C, Vol. 27, pp. 684–690, 2007.
  • 25. F. Z. Mezahi, H. Oudadesse, A. Harabi, A. Lucas‐Girot, Y. Le Gal, H. Chaair, G. Cathelineau, “Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment: Comparison to synthetic hydroxyapatite”, Journal of Thermal Analysis and Calorimetry, Vol. 95, Iss. 1, pp. 21–29, 2009.
  • 26. J. Rouquerol, “L'analyse thermique a vitesse de decomposition constant”, Journal of Thermal Analysis, Vol. 2, Iss. 2, pp. 123–140, 1970.
  • 27. J. Rouquerol, O. Toft Sørensen, General Introduction to Sample-Controlled Thermal Analysis (SCTA). In: O. Toft Sørensen and J. Rouquerol editors. Hot Topics in Thermal Analysis and Calorimetry - Sample Controlled Thermal Analysis. Origin, Goals, Multiple Forms, Applications and Future. Dordrecht: Kluwer Academic Publishers, Vol. 3, pp 1–7, 2003.
  • 28. K. Nahdi, F. Rouquerol, M. T. Ayadi, Mg(OH)2 dehydroxylation: A kinetic study by controlled rate thermal analysis (CRTA), Solid State Sciences, Vol. 11, pp. 1028–1034, 2009.
  • 29. J. Rouquerol, K.S.W. Sing, P. Llewellyn, Adsorption by Metal Oxides. In F. Rouquerol, J. Rouquerol, K.S.W. Sing, P.L. Llewellyn and G. Maurin editors. Adsorption by Powders and Porous Solids, 2nd ed. Amsterdam: Elsevier/AP, pp. 393-465, 2014.
  • 30. M. D. Alcalá, F. J. Gotor, L. A. Pérez‐Maqueda, C. Real, M. J. Dianez, J. M. Criado, “Constant rate thermal analysis (CRTA) as a tool for the synthesis of materials with controlled texture and structure”, Journal of Thermal Analysis and Calorimetry, Vol. 56, pp. 1447–1452, 1999.
  • 31. A. A. El hadad, V. Barranco, A. Jiménez‐Morales, E. Peón, G. J. Hickman, C. C. Perry, J. C. Galván, “Enhancing in vitro biocompatibility and corrosion protection of organic‐inorganic hybrid sol‐gel films with nanocrystalline hydroxyapatite”, Journal of Materials Chemistry B, Vol. 2, pp. 3886–3896, 2014.
  • 32. A. A. El hadad, V. Barranco, A. Jiménez‐Morales, G. J. Hickman, J. C. Galván, C. C. Perry, “Triethylphosphite as a network forming agent enhances in‐vitro biocompatibility and corrosion protection of hybrid organic‐inorganic sol‐gel coatings for Ti6Al4V alloys”, Journal of Materials Chemistry B, Vol. 2, pp. 7955–7963, 2014.
  • 33. D. Mo Liu, T. Troczynski, W. J. Tseng, “Water‐based sol‐gel synthesis of hydroxyapatite: process development”, Biomaterials, Vol. 22, Iss. 13, pp. 1721–1730, 2001.
  • 34. D. Mo Liu, Q. Yang, T. Troczynski, “Sol‐gel hydroxyapatite coatings on stainless steel substrates”, Biomaterials, Vol. 23, Iss. 3, pp. 691–698, 2002.
  • 35. D. Mo Liu, Q. Yang, T. Troczynski, W. J. Tseng, “Structural evolution of sol‐gel‐derived hydroxyapatite”, Biomaterials, Vol. 23, Iss. 7, pp. 1679–1687, 2002.
  • 36. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, “Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3”, Journal of Biomedical Materials Research, Vol. 24, pp. 721–734, 1990.
  • 37. T. Kizuki, T. Matsushita, T. Kokubo, “Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys”, Journal of Materials Science: Materials in Medicine, Vol. 25, Iss. 7, pp. 1737–1746, 2014.
  • 38. A. I. Mitsionis, T. C. Vaimakis, “A calorimetric study of the temperature effect on calcium phosphate precipitation”, Journal of Thermal Analysis and Calorimetry, Vol. 99, pp. 785–789, 2010.
  • 39. K. Tõnsuaadu, K. A. Gross, L. Pluduma, M. Veiderma, “A review on the thermal stability of calcium apatites”, Journal of Thermal Analysis and Calorimetry, Vol. 110, Iss. 2, pp. 647–659, 2012.
  • 40. K. Tõnsuaadu, M. Peld, V. Bender, “Thermal analysis of apatite structure”, Journal of Thermal Analysis and Calorimetry, Vol. 72, pp. 363–371, 2003.
  • 41. B. O. Fowler, “Infrared studies of apatites I”, Inorganic Chemistry, Vol. 13, pp. 194–206, 1974.
  • 42. N. Pleshko, A. Boskey, R. Mendelsohn, “Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatyte minerals”, Biophysical Journal, Vol. 60, pp. 786–793, 1991.
  • 43. A. Antonakos, E. Liarokapis, T. Leventouri, “Micro‐Raman and FTIR studies of synthetic and natural apatites”, Biomaterials, Vol. 28, pp. 3043–3054, 2007.
  • 44. S. Mazumder, B. Mukberjee, “Quantitative determination of amorphous content in bioceramic hydroxyapatite (HA) using x‐ray powder diffraction data”, Materials Research Bulletin, Vol. 30, Iss. 11, pp. 1439–1445, 1995.
  • 45. E. Landi, A. Tampieri, G. Celotti, S. Sprio, “Densification behavior and mechanisms of synthetic hydroxyapatites”, Journal European Ceramic Society, Vol. 20, pp. 2377–2387, 2000.
  • 46. A. A. El hadad, “An approach to the design new coatings for biomedical applications” [thesis]. Universidad Carlos III de Madrid, Leganés. 2012. Available from: http://e‐archivo.uc3m.es/handle/10016/16374 [accessed: 2016‐09‐19].
  • 47. E. Peón, “Recubrimientos bioactivos de base hidroxiapatita sobre Ti6Al4V para aplicaciones biomédicas” [thesis]. Universidad de La Habana, Cuba. 2013.
  • 48. B. Chico, J. C. Galván, D. de la Fuente, M. Morcillo, “Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of silane systems applied on steel substrates”, Progress in Organic Coatings, Vol. 60, Iss. 1, pp. 45–53, 2007.
  • 49. ZView 3.5a Software, Scribner Association Inc., D. Johnson. Available from: http://www.scribner.com/ [accessed: 2016‐09‐19].