A Measuring Approach to Assess the Corrosion Rate of Magnesium Alloys Using Electrochemical Impedance Spectroscopy

  1. Barranco, Violeta 1
  2. García-Galvan, Federico R. 1
  3. Batlle, Sebastian Feliu 1
  4. Delgado, Maria C. 12
  1. 1 Centro Nacional de Investigaciones Metalúrgicas
    info

    Centro Nacional de Investigaciones Metalúrgicas

    Madrid, España

    ROR https://ror.org/04m7z8d34

  2. 2 Universidad Simón Bolívar
    info

    Universidad Simón Bolívar

    Caracas, Venezuela

    ROR https://ror.org/01ak5cj98

Libro:
Magnesium Alloys

Año de publicación: 2017

Tipo: Capítulo de Libro

DOI: 10.5772/65018 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

An attempt was made to estimate the corrosion rate of AZ31 and AZ61 magnesium alloys immersed in 0.6 M NaCl during long‐term exposure using electrochemical impedance spectroscopy (EIS). The EIS results were compared with the corrosion rate independently assessed by the hydrogen evolution test. A correlation was established between the integration of the polarization resistance (Rp) and charge transfer resistance (Rt) over time, as evaluated by EIS and hydrogen gas measurements. Regardless of the immersion time, a strong link was found between the Rt and Rp values determined by EIS. This relation seems to depend on the composition of the alloy. The influence of immersion time on the estimated corrosion rate reliability was investigated. The typical deviations of the measurement methods are apparently decreasing upon prolonging the immersion time. No significant errors were obtained in the measurement of the corrosion rate when using Rt or Rp determined by EIS with their corresponding “apparent” Stern‐Geary coefficient values compared with the real values determined by gravimetric measurements.

Referencias bibliográficas

  • 1. Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. Journal of Alloys and Compounds. 2002; 336: 88–113. DOI: 10.1016/S0925‐8388(01) 01899‐0
  • 2. Kulekci MK. Magnesium and its alloys applications in automotive industry. International Journal of Advanced Manufacturing Technology. 2008; 39: 851–865. DOI: 10.1007/s00170‐007‐1279‐2
  • 3. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science. 2008; 12: 63–72. DOI: 10.1016/j.cossms.2009.04.001
  • 4. Song GL. Recent progress in corrosion and protection of magnesium alloys. Advanced Engineering Materials. 2005; 7: 563–586. DOI: 10.1002/adem.200500013
  • 5. Shkirskiy V, King AD, Gharbi O, Volovitch P, Scully JR, Ogle K, Birbilis N. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy. ChemPhysChem. 2015; 16: 536–539. DOI: 10.1002/cphc.201402666
  • 6. Banerjee PC, Raman RKS, Durandet Y, McAdam G. Electrochemical investigation of the influence of laser surface melting on the microstructure and corrosion behaviour of ZE41 magnesium alloy – an EIS based study. Corrosion Science. 2011; 53: 1505–1514. DOI: 10.1016/j.corsci.2011.01.017
  • 7. Feliu Jr. S, Barajas R, Bastidas JM, Morcillo M, Feliu S. Study of protection mechanisms of zinc‐rich paints by electrochemical impedance spectroscopy. In: Scully JR, Silverman DC, Kendig MW, editors. Electrochemical Impedance: Analysis and Interpretation. Vol. 1188. Philadelphia: ASTM; 1993. pp. 438–449. DOI: 10.1520/STP18084S
  • 8. Feliu Jr. S, Maffiotte C, Samaniego A, Galvan JC, Barranco V. Effect of naturally formed oxide films and other variables in the early stages of Mg‐alloy corrosion in NaCl solution. Electrochimica Acta. 2011; 56: 4454–4565. DOI: 10.1016/j.electacta.2011.02.077
  • 9. Jamesh M, Kumar S, Sankara Narayanan TSNS. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer's solution – Long term evaluation by EIS. Corrosion Science. 2011; 53: 645–654. DOI: 10.1016/j.corsci.2010.10.011
  • 10. Jian SY, Chu YR, Lin CS. Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science. 2015; 93: 301–309. DOI: 10.1016/j.corsci.2015.01.040
  • 11. Rocca E, Juers C, Steinmetz J. Corrosion behaviour of chemical conversion treatments on as‐cast Mg–Al alloys: Electrochemical and non‐electrochemical methods. Corrosion Science. 2010; 52: 2172–2178. DOI: 10.1016/j.corsci.2010.02.036
  • 12. Ardelean H, Frateur I, Marcus P. Corrosion protection of magnesium alloys by cerium, zirconium and niobium‐based conversion coatings. Corrosion Science. 2008; 50: 1907–1918. DOI: 10.1016/j.corsci.2008.03.015
  • 13. Chu YR, Lin CS. Citrate gel conversion coating on AZ31 magnesium alloys. Corrosion Science. 2014; 87: 288–296. DOI: 10.1016/j.corsci.2014.06.034
  • 14. Chen J, Song YW, Shan DY, Han EH. Study of the corrosion mechanism of the in situ grown Mg–Al–CO32- hydrotalcite film on AZ31 alloy. Corrosion Science. 2012; 65: 268–277. DOI: 10.1016/j.corsci.2012.08.026
  • 15. Feliu Jr. S, Samaniego A, Barranco V, El‐Hadad AA, Llorente I, Adeva P. The effect of low temperature heat treatment on surface chemistry and corrosion resistance of commercial magnesium alloys AZ31 and AZ61 in 0.6 M NaCl solution. Corrosion Science. 2014; 80: 461–472. DOI: 10.1016/j.corsci.2013.11.065
  • 16. Pebere N, Riera C, Dabosi F. Investigation of magnesium corrosion in aerated sodium‐sulfate solution by electrochemical impedance spectroscopy. Electrochimica Acta. 1990; 35: 555–561. DOI: 10.1016/0013‐4686(90)87043‐2
  • 17. Makar L, Kruger J. Corrosion studies of rapidly solidified magnesium alloys. Journal of the Electrochemical Society 1990; 137: 414–421. DOI: 10.1149/1.2086455
  • 18. Mathieu S, Rapin C, Hazan J, Steinmetz P. Corrosion behaviour of high pressure die‐cast and semi‐solid cast AZ91D alloys. Corrosion Science. 2002; 44: 2737–2756. DOI: 10.1016/S0010‐938X(02)00075‐6
  • 19. Feliu Jr. S, Samaniego A, Barranco V, El‐Hadad AA, Llorente I, Serra C, Galvan JC. A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61. Applied Surface Science. 2014; 295: 219–230. DOI: 10.1016/j.apsusc.2014.01.033
  • 20. Feliu Jr. S, Samaniego A, Bermudez EA, El‐Hadad AA, Llorente I, Galvan JC. Effect of native oxide film on commercial magnesium alloys substrates and carbonate conversion coating growth and corrosion resistance. Materials. 2014; 7: 2534–2560. DOI: 10.3390/ma7042534
  • 21. Stern M, Geary AL. Electrochemical polarization 1. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society. 1957; 104: 56–63. DOI: 10.1149/1.2428496
  • 22. King AD, Birbilis N, Scully JR. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass‐loss and hydrogen collection study. Electrochimica Acta. 2014; 121: 394–406. DOI: 10.1016/j.electacta.2013.12.124
  • 23. Poursaee A. Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern–Geary constant of reinforcing steel in concrete. Cement and Concrete Research. 2010; 40: 1451–1458. DOI: 10.1016/j.cemconres.2010.04.006
  • 24. Curioni M, Scenini F, Monetta T, Bellucci F. Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real‐time hydrogen measurement and optical imaging. Electrochimica Acta. 2015; 166: 372–384. DOI: 10.1016/j.electacta.2015.03.050
  • 25. Fajardo S, Frankel GS. Gravimetric method for hydrogen evolution measurements on dissolving magnesium. Journal of the Electrochemical Society. 2015; 162: C693–C701. DOI: 10.1149/2.0241514jes
  • 26. Bland LG, King AD, Birbilis N, Scully JR. Assessing the corrosion of commercially pure magnesium and commercial AZ31B by electrochemical impedance, mass‐loss, hydrogen collection, and inductively coupled plasma optical emission spectrometry solution analysis. Corrosion. 2015; 71: 128–145. DOI: 10.5006/1419
  • 27. Feliu Jr. S, Maffiotte C, Samaniego A, Galván JC, Barranco V. Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys. Applied Surface Science. 2011; 257: 8558–8568. DOI: 10.1016/j.apsusc.2011.05.014
  • 28. Feliu Jr. S, Llorente I. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability. Applied Surface Science. 2015; 347: 736–746. DOI: 10.1016/j.apsusc.2015.04.189
  • 29. Samaniego A, Llorente I, Feliu Jr. S. Combined effect of composition and surface condition on corrosion behavior of magnesium alloys AZ31 and AZ61. Corrosion Science. 2013; 68: 66–71. DOI: 10.1016/j.corsci.2012.10.034
  • 30. Feliu Jr. S, Maffiotte C, Galvan JC, Barranco V. Atmospheric corrosion of magnesium alloys AZ31 and AZ61 under continuous condensation conditions. Corrosion Science. 2011; 53: 1865–1872. DOI: 10.1016/j.corsci.2011.02.003
  • 31. Samaniego A, Feliu Jr. S. Different performance of factors affecting the estimation of the corrosion rate in magnesium alloys by implementation of the common methods for electrochemical measurements. In: Monteiro WA, editor. Light Metal Alloys Applications. Croatia: Intech; 2014. p. 145–161. DOI: 10.5772/58370
  • 32. Atrens A, Song GL, Liu M, Shi Z, Cao F, Dargusch MS. Review of recent developments in the field of magnesium corrosion. Advanced Engineering Materials. 2015; 17: 400–453. DOI:10.1002/adem.201400434
  • 33. Abidin NIZ, Rolfe B, Owen H, Malisano J, Martin D, Hofstetter J, Uggowitzer PJ, Atrens A. The in vivo and in vitro corrosion of high‐purity magnesium and magnesium alloys WZ21 and AZ91. Corrosion Science. 2013; 75: 354–366. DOI: 10.1016/j.corsci.2013.06.019
  • 34. Abidin NIZ, Atrens AD, Martin D, Atrens A. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37°C. Corrosion Science. 2011; 53: 3542–3556. DOI: 10.1016/j.corsci.2011.06.030
  • 35. Song GL, Song SZ. A possible biodegradable magnesium implant material. Advanced Engineering Materials. 2007; 9: 298–302. DOI: 10.1002/adem.200600252
  • 36. Song GL. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science. 2007; 49: 1696–1701. DOI: 10.1016/j.corsci.2007.01.001
  • 37. Wang H, Estrin Y, Fu H, Song G, Zuberova Z. The effect of pre‐processing and grain structure on the bio‐corrosion and fatigue resistance of magnesium alloy AZ31. Advanced Engineering Materials. 2007; 9: 967–972. DOI: 10.1002/adem.200700200
  • 38. Atrens A, Song GL, Cao F, Shi Z, Bowen PK. Advances in Mg corrosion and research suggestions. Journal of Magnesium and Alloys. 2013; 1: 177–200. DOI: 10.1016/j.jma.2013.09.003
  • 39. Hsieh MK, Dzombak DA, Vidie RD. Bridging gravimetric and electrochemical approaches to determine the corrosion rate of metals and metal alloys in cooling systems: Bench scale evaluation method. Industrial and Engineering Chemistry Research. 2010; 49: 9117–9123. DOI: 10.1021/ie100217k
  • 40. Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomaterialia. 2012; 8: 925–936. DOI: 10.1016/j.actbio.2011.11.014
  • 41. Liu M, Schmutz P, Uggowitzer PJ, Song GL, Atrens A. The influence of yttrium (Y) on the corrosion of Mg‐Y binary alloys. Corrosion Science. 2010; 52: 3687–3701. DOI: 10.1016/j.corsci.2010.07.019
  • 42. Qiao ZX, Shi ZM, Hort N, Abidin NIZ, Atrens A. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting. Corrosion Science. 2012; 61: 185–207. DOI: 10.1016/j.corsci.2012.04.030
  • 43. Shi ZM, Cao FY, Song GL, Atrens A. Low apparent valence of Mg during corrosion. Corrosion Science. 2014; 88: 434–443. DOI: 10.1016/j.corsci.2014.07.060
  • 44. Shi ZM, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science. 2010; 52: 579–588. DOI: 10.1016/j.corsci.2009.10.016
  • 45. Cao FY, Shi ZM, Hofstetter J, Uggowitzer PJ, Song GL, Liu M, Atrens A. Corrosion of ultra‐high‐purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corrosion Science. 2013; 75: 78–99. DOI: 10.1016/j.corsci.2013.05.018
  • 46. Frankel GS, Samaniego A, Birbilis N. Evolution of hydrogen at dissolving magnesium surfaces. Corrosion Science. 2013; 70: 104–111. DOI: 10.1016/j.corsci.2013.01.017
  • 47. ZView software. Version 3.4d (Scribner Associates Inc.), Southern Pines, NC, USA.
  • 48. Johnston S, Shi ZM, Atrens A. The influence of pH on the corrosion rate of high‐purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corrosion Science. 2015; 101: 182–192. DOI: 10.1016/j.corsci.2015.09.018
  • 49. Feliu Jr. S, El‐Hadad AA, Barranco V, Llorente I, García‐Galván FR, Jiménez‐Morales A, Galván JC. Native oxide films on AZ31 and AZ61 commercial magnesium alloys: Corrosion behaviour, effect on isothermal oxidation and sol–gel thin film formation. In: Ahmad Z, editor. New Trends in Alloy Development, Characterization and Application. Croatia: Intech; 2015. p. 97–122. DOI: 10.5772/60721
  • 50. Zander D, Schnatterer C. The influence of manufacturing processes on the microstructure and corrosion of the AZ91D magnesium alloy evaluated using a computational image analysis. Corrosion Science. 2015; 98: 291–303. DOI: 10.1016/j.corsci.2015.05.032
  • 51. Lebouil S, Duboin A, Monti F, Tabeling P, Volovitch P, Ogle K. A novel approach to on‐line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution. Electrochimica Acta. 2014; 124: 176–182. DOI: 10.1016/j.electacta.2013.07.131
  • 52. Fajardo S, Frankel GS. Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochimica Acta. 2015; 165: 255–267. DOI: 10.1016/j.electacta.2015.03.021
  • 53. Murray JN, Moran PJ, Gileadi E. Utilization of the specific pseudocapacitance for determination of the area of corroding steel surfaces. Corrosion. 1988; 44: 533–538.
  • 54. Brooks EK, Der S, Ehrensberger MT. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions. Materials Science and Engineering: C. 2016; 60: 427–436. DOI: 10.1016/j.msec.2015.11.059
  • 55. Wang J, Jang Y, Wan GJ, Giridharan V, Song GL, Xu ZG, Koo Y, Qi PK, Sankar J, Huang N, Yun YH. Flow‐induced corrosion of absorbable magnesium alloy: In‐situ and real‐time electrochemical study. Corrosion Science. 2016; 104: 277–289. DOI: 10.1016/j.corsci.2015.12.020s
  • 56. Yeganeh M, Saremi M. Corrosion inhibition of magnesium using biocompatible Alkyd coatings incorporated by mesoporous silica nanocontainers. Progress in Organic Coatings. 2015; 79: 25–30. DOI: 10.1016/j.porgcoat.2014.10.015
  • 57. Hou RQ, Ye CQ, Chen CD, Dong SG, Lv MQ, Zhang S, Pan JS, Song GL, Lin CJ. Localized corrosion of binary Mg–Ca alloy in 0.9 wt% sodium chloride solution. Acta Metallurgica Sinica (English Letters). 2016; 29: 46–57. DOI: 10.1007/s40195‐015‐0361‐2
  • 58. Wu CS, Zhang Z, Cao FH, Zhang LJ, Zhang JQ, Cao CN. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Applied Surface Science. 2007; 253: 3893–3898. DOI: 10.1016/j.apsusc.2006.08.020
  • 59. Metikos‐Hukovic M, Babic R, Grubac Z, Brinic S. Impedance spectroscopic study of aluminum and Al‐alloys in acid‐solution – inhibitory‐action of nitrogen‐containing compounds. Journal of Applied Electrochemistry. 1994; 24: 772–778. DOI: 10.1007/BF00578093
  • 60. Song YW, Shan DY, Chen RS, Han EH. Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science. 2009; 51: 1087–1094. DOI: 10.1016/j.corsci.2009.03.011
  • 61. Liang J, Srinivasan PB, Blawert C, Dietzel W. Influence of pH on the deterioration of plasma electrolytic oxidation coated AM50 magnesium alloy in NaCl solutions. Corrosion Science 2010; 52: 540–547. DOI: 10.1016/j.corsci.2009.10.011
  • 62. Zhang YJ, Yan CW, Wang FH, Li WF. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corrosion Science. 2005; 47: 2816–2831. DOI: 10.1016/j.corsci.2005.01.010
  • 63. Kannan MB. Influence of microstructure on the in vitro degradation behaviour of magnesium alloys. Materials Letters. 2010; 64: 739–742. DOI: 10.1016/j.matlet.2010.01.022
  • 64. Jin S, Amira S, Ghali E. Electrochemical impedance spectroscopy evaluation of the corrosion behavior of die cast and thixocast AXJ530 magnesium alloy in chloride solution. Advanced Engineering Materials. 2007; 9: 75–83. DOI: 10.1002/adem.200600199
  • 65. Alvarez‐Lopez M, Pereda MD, del Valle JA, Fernandez‐Lorenzo M, Garcia‐Alonso MC, Ruano OA, Escudero ML. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomaterialia. 2010; 6: 1763–1771. DOI: 10.1016/j.actbio.2009.04.041
  • 66. Srinivasan PB, Liang J, Balajeee RG, Blawert C, Stormer M, Dietzel W. Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate‐based plasma electrolytic oxidation coated AM50 magnesium alloy. Applied Surface Science. 2010; 256: 3928–3935. DOI: 10.1016/j.apsusc.2010.01.052
  • 67. Lim TS, Ryu HS, Hong SH. Electrochemical corrosion properties of CeO2‐containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corrosion Science. 2012; 62: 104–111. DOI: 10.1016/j.corsci.2012.04.043
  • 68. Baril G, Blanc C, Pebere N. AC impedance spectroscopy in characterizing time‐dependent corrosion of AZ91 and AM50 magnesium alloys: Characterization with respect to their microstructures. Journal of the Electrochemical Society. 2001; 148: b469–b496. DOI: 10.1149/1.1415722
  • 69. Baril G, Galicia G, Deslouis C, Pebere N, Tribollet B, Vivier V. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. Journal of the Electrochemical Society. 2007; 154: C108–C113. DOI: 10.1149/1.2401056
  • 70. Chang JW, Guo XW, Fu PH, Peng LM, Ding WJ. Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Electrochimica Acta. 2007; 52: 3160–3167. DOI: 10.1016/j.electacta.2006.09.069
  • 71. Brett CMA, Dias L, Trindade B, Fischer R, Mies S. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying. Electrochimica Acta. 2006; 51: 1752–1760. DOI: 10.1016/j.electacta.2005.02.124
  • 72. Chang JW, Guo XW, He SM, Fu PH, Peng LM, Ding WJ. Investigation of the corrosion for Mg–xGd–3Y–0.4Zr (x = 6, 8, 10, 12 wt%) alloys in a peak‐aged condition. Corrosion Science. 2008; 50: 166–177. DOI: 10.1016/j.corsci.2007.06.003
  • 73. Turhan MC, Lynch R, Killian MS, Virtanen S. Effect of acidic etching and fluoride treatment on corrosion performance in Mg alloy AZ91D (MgAlZn). Electrochimica Acta. 2009; 55: 250–257. DOI: 10.1016/j.electacta.2009.08.046
  • 74. Breslin CB, Rudd AL. Activation of pure Al in an indium‐containing electrolyte — an electrochemical noise and impedance study. Corrosion Science. 2000; 42:1023–1039. DOI: 10.1016/S0010‐938X(99)00128‐6
  • 75. Barbucci A, Bruzzone G, Delucchi M, Panizza M, Cerisola G. Breakdown of passivity of aluminium alloys by intermetallic phases in neutral chloride solution. Intermetallics. 2000; 8: 305–312. DOI: 10.1016/S0966‐9795(99)00114‐4
  • 76. He WW, Zhang EL, Yang K. Effect of Y on the bio‐corrosion behavior of extruded Mg–Zn–Mn alloy in Hank's solution. Materials Science and Engineering: C. 2010; 30: 167–174. DOI: 10.1016/j.msec.2009.09.014
  • 77. Asmussen RM, Binns WJ, Jakupi P, Shoesmith D. Microstructural effects on corrosion of AM50 magnesium alloys. Journal of the Electrochemical Society. 2014; 161: C501–C508. DOI: 10.1149/2.0781410jes
  • 78. Song GL, Bowles AL, St John DH. Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering: A. 2004; 366: 74–86. DOI: 10.1016/j.msea.2003.08.060
  • 79. Song GL, Atrens A, Wu XL, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science. 1998; 40: 1769–1791. DOI: 10.1016/S0010‐938X(98)00078‐X
  • 80. Tekin KC, Malayoglu U, Shrestha S. Electrochemical behavior of plasma electrolytic oxide coatings on rare earth element containing Mg alloys. Surface and Coatings Technology. 2013; 236: 540–549. DOI: 10.1016/j.surfcoat.2013.10.051
  • 81. Lim TS, Ryu HS, Hong SH. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corrosion Science 2012; 62: 104–111. DOI: 10.1016/j.corsci.2012.04.043
  • 82. Shen DJ, Ma HJ, Guo CH, Cai JR, Li GL, He DL, Yang QX. Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy. Journal of Rare Earths. 2013; 31: 1208–1213. DOI: 10.1016/S1002‐0721(12)60428‐1
  • 83. Einkhah F, Lee KM, Sani MAF, Yoo B, Shin DH. Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two‐step plasma electrolytic oxidation. Surface and Coatings Technology. 2014; 238: 75–79. DOI: 10.1016/j.surfcoat.2013.10.042
  • 84. Singh IB, Singh M, Das S. A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys. 2015; 3: 142–148. DOI: 10.1016/j.jma.2015.02.004
  • 85. Zhang JF, Yan CW, Wang FH. Electrodeposition of Al–Mn alloy on AZ31B magnesium alloy in molten salts. Applied Surface Science. 2009; 255: 4926–4932. DOI: 10.1016/j.apsusc.2008.12.039
  • 86. Shi ZM, Cao FY, Song GL, Liu M, Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as‐cast and solution heat‐treated binary Mg–RE alloys: RE = Ce, La, Nd, Y, Gd. Corrosion Science. 2013; 76: 98–118. DOI: 10.1016/j.corsci.2013.06.032
  • 87. Cao FY, Shi ZM, Song GL, Liu M, Dargusch MS, Atrens A. Influence of hot rolling on the corrosion behavior of several Mg–X alloys. Corrosion Science. 2015; 90: 176–191. DOI: 10.1016/j.corsci.2014.10.012
  • 88. Su YC, Li GY, Lian JS. A chemical conversion hydroxyapatite coating on AZ60 magnesium alloy and its electrochemical corrosion behaviour. International Journal of Electrochemical Science. 2012; 7: 11497–11511.
  • 89. Rajabalizadeh Z, Seifzadeh D. The effect of copper ion on microstructure, plating rate and anticorrosive performance of electroless Ni‐P coating on AZ61 magnesium alloy. Protection of Metals and Physical Chemistry of Surfaces. 2014; 50: 516–523. DOI: 10.1134/S2070205114040157
  • 90. Rajabalizadeh Z, Seifzadeh D. Environmentally‐friendly method for electroless Ni–P plating on magnesium alloy. Surface and Coatings Technology. 2013; 218: 119–126. DOI: 10.1016/j.surfcoat.2012.12.039
  • 91. Cao FY, Shi ZM, Song GL, Liu M, Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as‐cast and solution heat‐treated binary Mg–X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corrosion Science. 2013; 76: 60–97. DOI: 10.1016/j.corsci.2013.06.030