A Critical Review of the Application of Electrochemical Techniques for Studying Corrosion of Mg and Mg Alloys: Opportunities and Challenges

  1. Barranco, Violeta 1
  2. C. Galvan, Juan 1
  3. Fajardo, Santiago 1
  4. Feliu Batlle, Sebastian 1
  5. R. García-Galvan, Federico 1
  1. 1 Centro Nacional de Investigaciones Metalúrgicas
    info

    Centro Nacional de Investigaciones Metalúrgicas

    Madrid, España

    ROR https://ror.org/04m7z8d34

Libro:
Magnesium Alloys - Selected Issue

Año de publicación: 2018

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.79497 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

In order to elucidate the corrosion mechanism of Magnesium (Mg), assess its corrosion rate and evaluate the viability of effective corrosion protection methods, a number of different and complementary techniques are required. Aqueous corrosion is, in nature, an electrochemical process and as such electrochemical methods represent a powerful tool for the study of Mg corrosion. In this chapter the main electrochemical techniques used to study the corrosion of Mg are reviewed along with other simple non-electrochemical methods such as weight loss and hydrogen evolution measurements. The electrochemical techniques covered in this review include conventional DC and AC electrochemical techniques and the latest advances in local electrochemical methods for the evaluation and characterization of Mg corrosion. Each technique presented will be discussed, and its major advantages and drawbacks for the study of Mg corrosion will be commented. Applications range from studies of influence of the impurities in catalytic activity of high purity Mg towards hydrogen evolution, the determination of corrosion rate for Mg and Mg alloys by electrochemical methods and electrochemical study of sol-gel films as pre-treatment for Mg alloys.

Referencias bibliográficas

  • Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG. Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science. 2017;89:92-193
  • Fajardo S, Frankel GS. Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochimica Acta. 2015;165:255-267
  • Bland LG, King AD, Birbilis N, Scully JR. Assessing the corrosion of commercially pure magnesium and commercial AZ31B by electrochemical impedance, mass-loss, hydrogen collection, and inductively coupled plasma optical emission spectrometry solution analysis. Corrosion. 2015;71:128-145
  • Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomaterialia. 2012;8:925-936
  • Fajardo S, Frankel GS. Gravimetric method for hydrogen evolution measurements on dissolving magnesium. Journal of The Electrochemical Society. 2015;162:C693-C701.
  • Song G, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In: Hryn JN, editor. Magnesium Technology. Hoboken, N.J: John Wiley & Sons; 2001. pp. 254-262. DOI: 10.1002/9781118805497.ch44
  • 7. Curioni M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta. 2014;120:284-292. DOI: 10.1016/j.electacta.2013.12.109
  • 8. Frankel GS. Electrochemical techniques in corrosion: Status, limitations, and needs. Journal of Testing and Evaluation. 2014;42:517-540. DOI: 10.1520/JTE20140289
  • 9. Marco I, Van der Biest O. Polarization measurements from a rotating disc electrode for characterization of magnesium corrosion. Corrosion Science. 2016;102:384-393. DOI: 10.1016/j.corsci.2015.10.031
  • 10. Stern M, Geary AL. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. Journal of The Electrochemical Society. 1957;104:56-63. DOI: 10.1149/1.2428496
  • 11. Argade GR, Panigrahi SK, Mishra RS. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corrosion Science. 2012;58:145-151. DOI: 1 0.1016/j.corsci.2012.01.021
  • 12. Bockris JOM, Reddy AKN. Modern Electrochemistry. New York: Kluwer Academic/Plenum Publishing; 2000. p. 1432. DOI: 10.1007/978-1-4613-4560-2
  • 13. Birbilis N, King AD, Thomas S, Frankel GS, Scully JR. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution. Electrochimica Acta. 2014;132:277-283. DOI: 10.1016/j.electacta.2014.03.133
  • 14. Fajardo S, Glover CF, Williams G, Frankel GS. The source of anodic hydrogen evolution on ultra high purity magnesium. Electrochimica Acta. 2016;212:510-521. DOI: 10.1016/j.electacta.2016.07.018
  • 15. Frankel GS, Fajardo S, Lynch BM. Introductory lecture on corrosion chemistry: A focus on anodic hydrogen evolution on Al and Mg. Faraday Discussions. 2015;180:11-33. DOI: 10.1039/C5FD00066A
  • 16. Fajardo S, Glover CF, Williams G, Frankel GS. The evolution of anodic hydrogen on high purity magnesium in acidic buffer solution. Corrosion. 2017;73:482-493. DOI: 10.5006/2247
  • 17. King AD, Birbilis N, Scully JR. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochimica Acta. 2014;121:394-406. DOI: 10.1016/j.electacta.2013.12.124
  • 18. Feliu S, García-Galvan FR, Llorente I, Diaz L, Simancas J. Influence of hydrogen bubbles adhering to the exposed surface on the corrosion rate of magnesium alloys AZ31 and AZ61 in sodium chloride solution. Materials and Corrosion. 2017;68:651-663. DOI: 10.1002/maco.201609233
  • 19. Curioni M, Scenini F, Monetta T, Bellucci F. Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta. 2015;166:372-384. DOI: 10.1016/j.electacta.2015.03.050
  • 20. Jamesh M, Kumar S, Sankara Narayanan TSN. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution – Long term evaluation by EIS. Corrosion Science. 2011;53:645-654. DOI: 10.1016/j.corsci.2010.10.011
  • 21. Song G-L, Shi Z. Corrosion mechanism and evaluation of anodized magnesium alloys. Corrosion Science. 2014;85:126-140. DOI: 10.1016/j.corsci.2014.04.008
  • 22. Moreto JA, Marino CEB, Bose Filho WW, Rocha LA, Fernandes JCS. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corrosion Science. 2014;84:30-41. DOI: 10.1016/j.corsci.2014.03.001
  • 23. Pinto R, Ferreira MGS, Carmezim MJ, Montemor MF. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution. Electrochimica Acta. 2011;56:1535-1545. DOI: 10.1016/j.electacta.2010.09.081
  • 24. Galicia G, Pébère N, Tribollet B, Vivier V. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy. Corrosion Science. 2009;51:1789-1794. DOI: 10.1016/j.corsci.2009.05.005
  • 25. Baril G, Pébère N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Science. 2001;43:471-484. DOI: 10.1016/S0010-938X(00)00095-0
  • 26. Cao F, Shi Z, Hofstetter J, Uggowitzer PJ, Song G, Liu M, Atrens A. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corrosion Science. 2013;75:78-99. DOI: 10.1016/j.corsci.2013.05.018
  • 27. Brett CMA, Dias L, Trindade B, Fischer R, Mies S. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying. Electrochimica Acta. 2006;51:1752-1760. DOI: 10.1016/j.electacta.2005.02.124
  • 28. Baril G, Blanc C, Pébère N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures. Journal of The Electrochemical Society. 2001;148:B489-B496. DOI: 10.1149/1.1415722
  • 29. Hassel AW, Lohrengel MM. The scanning droplet cell and its application to structured nanometer oxide films on aluminium. Electrochimica Acta. 1997;42:3327-3333. DOI: 10.1016/S0013-4686(97)00184-9
  • 30. Kollender JP, Voith M, Schneiderbauer S, Mardare AI, Hassel AW. Highly customisable scanning droplet cell microscopes using 3D-printing. Journal of Electroanalytical Chemistry. 2015;740:53-60. DOI: 10.1016/j.jelechem.2014.12.043
  • 31. Krawiec H, Stanek S, Vignal V, Lelito J, Suchy JS. The use of microcapillary techniques to study the corrosion resistance of AZ91 magnesium alloy at the microscale. Corrosion Science. 2011;53:3108-3113. DOI: 10.1016/j.corsci.2011.05.054
  • 32. Barranco V, Carmona N, Villegas MA, Galvan JC. Tailored sol-gel coatings as environmentally friendly pre-treatments for corrosion protection. ECS Transactions. 2010;24:277-290. DOI: 10.1149/1.3453622
  • 33. Mueller WD. Electrochemical techniques for assessment of corrosion behaviour of Mg and Mg-alloys. BioNanoMaterials. 2015;16:31-39. DOI: 10.1515/bnm-2015-0006
  • 34. Grundmeier G, Jüttner K, Stratmann M. Novel electrochemical techniques in corrosion research. In: Cahn RW, Haasen P, Kramer EJ, editors. Materials Science and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. pp. 287-376. DOI: 10.1002/crat.2170300811
  • 35. Barranco V, Thiemann P, Yasuda HK, Stratmann M, Grundmeier G. Spectroscopic and electrochemical characterisation of thin cathodic plasma polymer films on iron. Applied Surface Science. 2004;229:87-96. DOI: 10.1016/j.apsusc.2004.01.046
  • 36. Thomas S, Izquierdo J, Birbilis N, Souto RM. Possibilities and limitations of scanning electrochemical microscopy of Mg and Mg alloys. Corrosion. 2015;71:171-183. DOI: 10.5006/1483
  • 37. Jamali SS, Moulton SE, Tallman DE, Forsyth M, Weber J, Wallace GG. Evaluating the corrosion behaviour of magnesium alloy in simulated biological fluid by using SECM to detect hydrogen evolution. Electrochimica Acta. 2015;152:294-301. DOI: 10.1016/j.electacta.2014.11.012
  • 38. Liu W, Cao F, Xia Y, Chang L, Zhang J. Localized corrosion of magnesium alloys in NaCl solutions explored by scanning electrochemical microscopy in feedback mode. Electrochimica Acta. 2014;132:377-388. DOI: 10.1016/j.electacta.2014.04.044
  • 39. Izquierdo J, Nagy L, Bitter I, Souto RM, Nagy G. Potentiometric scanning electrochemical microscopy for the local characterization of the electrochemical behaviour of magnesium-based materials. Electrochimica Acta. 2013;87:283-293. DOI: 10.1016/j.electacta.2012.09.029
  • 40. Salleh SH, Thomas S, Yuwono JA, Venkatesan K, Birbilis N. Enhanced hydrogen evolution on Mg(OH)2 covered Mg surfaces. Electrochimica Acta. 2015;161:144-152. DOI: 10.1016/j.electacta.2015.02.079
  • 41. Bastos AC, Quevedo MC, Karavai OV, Ferreira MGS. Review—On the application of the scanning vibrating electrode technique (SVET) to corrosion research. Journal of The Electrochemical Society. 2017;164:C973-C990. DOI: 10.1149/2.0431714jes
  • 42. Williams G, Neil McMurray H. Localized corrosion of magnesium in chloride-containing electrolyte studied by a scanning vibrating electrode technique. Journal of The Electrochemical Society. 2008;155:C340-C349. DOI: 10.1149/1.2918900
  • 43. Isaacs HS, Vyas B. Scanning reference electrode techniques in localized corrosion. In: Mansfeld F, Bertocci U, editors. STP727 Electrochemical Corrosion Testing, American Society for Testing and Materials. Philadelphia: ASTM; 1981. DOI: 10.1520/STP28024S
  • 44. Isaacs HS. Limitations of in situ current density mapping for vibrating electrodes close to metal surfaces. Corrosion. 1990;46:677-679. DOI: 10.5006/1.3585167
  • 45. Wilson BP, Searle JR, Yliniemi K, Worsley DA, McMurray HN. Effect of probe tip inclination on the response of the scanning vibrating electrode technique to an idealised pit-like feature. Electrochimica Acta. 2012;66:52-60. DOI: 10.1016/j.electacta.2012.01.062
  • 46. Williams G, McMurray HN, Grace R. Inhibition of magnesium localised corrosion in chloride containing electrolyte. Electrochimica Acta. 2010;55:7824-7833. DOI: 10.1016/j.electacta.2010.03.023
  • 47. Williams G, Birbilis N, McMurray HN. The source of hydrogen evolved from a magnesium anode. Electrochemistry Communications. 2013;36:1-5. DOI: 10.1016/j.elecom.2013.08.023
  • 48. Montemor MF, Simões AM, Carmezim MJ. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science. 2007;253:6922-6931. DOI: 10.1016/j.apsusc.2007.02.019
  • 49. Montemor MF, Ferreira MGS. Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy. Electrochimica Acta. 2007;52:7486-7495. DOI: 10.1016/j.electacta.2006.12.086
  • 50. Galio AF, Lamaka SV, Zheludkevich ML, Dick LFP, Müller IL, Ferreira MGS. Inhibitor-doped sol-gel coatings for corrosion protection of magnesium alloy AZ31. Surface and Coatings Technology. 2010;204:1479-1486. DOI: 10.1016/j.surfcoat.2009.09.067
  • 51. Simões AM, Battocchi D, Tallman DE, Bierwagen GP. SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating. Corrosion Science. 2007;49:3838-3849. DOI: 10.1016/j.corsci.2007.03.045
  • 52. Bierwagen G, Battocchi D, Simões A, Stamness A, Tallman D. The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys. Progress in Organic Coatings. 2007;59:172-178. DOI: 10.1016/j.porgcoat.2007.01.022
  • 53. Isaacs HS, Kendig MW. Determination of surface inhomogeneities using a scanning probe impedance technique. Corrosion. 1980;36:269-274. DOI: 10.5006/0010-9312
  • 54. Huang VM, Wu S-L, Orazem ME, Pébère N, Tribollet B, Vivier V. Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochimica Acta. 2011;56:8048-8057. DOI: 10.1016/j.electacta.2011.03.018
  • 55. Bayet E, Huet F, Keddam M, Ogle K, Takenouti H. A novel way of measuring local electrochemical impedance using a single vibrating probe. Journal of The Electrochemical Society. 1997;144:L87-L90. DOI: 10.1149/1.1837562
  • 56. Baril G, Blanc C, Keddam M, Pébère N. Local electrochemical impedance spectroscopy applied to the corrosion behavior of an AZ91 magnesium alloy. Journal of The Electrochemical Society. 2003;150:B488-B493. DOI: 10.1149/1.1602080
  • 57. Wittmann MW, Leggat RB, Taylor SR. The detection and mapping of defects in organic coatings using local electrochemical impedance methods. Journal of The Electrochemical Society. 1999;146:4071-4075. DOI: 10.1149/1.1392593
  • 58. Baril G, Galicia G, Deslouis C, Pébère N, Tribollet B, Vivier V. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. Journal of The Electrochemical Society. 2007;154:C108-C113. DOI: 10.1149/1.2401056
  • 59. Barranco V, Carmona N, Galván JC, Grobelny M, Kwiatkowski L, Villegas MA. Electrochemical study of tailored sol-gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Progress in Organic Coatings. 2010;68:347-355. DOI: 10.1016/j.porgcoat.2010.02.009
  • 60. Galvan JC, García-Galván FR, Barranco V, Jiménez-Morales A, Feliu S Jr. Waterborne sol-gel coatings doped with corrosion inhibitors for the protection of Mg-Al alloys. In: Proceedings of the Forty-Second Annual International Waterborne, High-Solids, and Powder Coatings Symposium; 8-13 February 2015; New Orleans. Raleigh: NC Lulu Press; 2015. pp. 349-365