Effect of ZrO2 and L-Cys nanoparticles as dopants in sol-gel of mesoporous silica coating for corrosion protection of AZ61 magnesium alloy

  1. Hernández, Leonardo 1
  2. Veleva, Lucien 1
  3. García-Galván, Federico R. 2
  4. Galván, Juan Carlos 2
  1. 1 Center for Investigation and Advanced Study (CINVESTAV-IPN), Applied Physics Department
  2. 2 Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC)
Revista:
Revista de metalurgia

ISSN: 0034-8570

Año de publicación: 2019

Volumen: 55

Número: 4

Páginas: 155

Tipo: Artículo

DOI: 10.3989/REVMETALM.155 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de metalurgia

Resumen

Sobre la superficie de la aleación de magnesio AZ61 se aplicaron recubrimientos de sol-gel basados en el precursor GPTMS-TMOS, incluyendo como agentes dopantes L-Cysteína y ZrO2 en diferentes concentraciones. Su resistencia a la corrosión se estudió en solución de 0,6M NaCl, por inmersión hasta 14 días. Los patrones de DRX revelaron que el principal producto de corrosión en las superficies recubiertas es Mg(OH)2, mientras que en la de AZ61 no tratada adicionalmente se formaron varios compuestos de Zn con cloro. El ataque de la corrosión localizada en el AZ61 no tratada se manifiesta en forma de grietas y cavernas, mientras que en las superficies recubiertas la corrosión fue principalmente a través de picaduras. Dos métodos electroquímicos no destructivos fueron empleados en este estudio, que contrastan el comportamiento electroquímico del AZ61 recubierto con el de la aleación no recubierta. La tendencia en los cambios del potencial de corrosión en circuito abierto se correlacionó positivamente con el análisis SEM-EDS y DRX. Los diagramas EIS se ajustaron satisfactoriamente al modelo de circuito equivalente y los valores obtenidos de resistencia a la corrosión Rcorr (Rs + Rct) disminuyen drásticamente con el tiempo de exposición. El efecto de ZrO2 y L-cisteína están marcadamente influenciados por los cambios del pH de la solución, el potencial Zeta de la carga superficial, los procesos de quimisorción y desorción, el estrés interno en el precursor sol-gel, así como el cambio en su estructura, después de la encapsulación de ambos dopantes.

Información de financiación

L. Hern?ndez gratefully thanks CONACYT for his scholarship as Ph.D. student at CINVESTAV-IPN and for the research stay at CENIM/CSIC (the National Center for metallurgical Research of Madrid, Spain). The authors acknowledge LANNBIO-CINVESTAV for permitting the use of their facilities, as well to D. Aguilar-Trevi?o, D. Huerta-Quintanilla, and G. Espinoza-Gurriz for their technical assistance.

Referencias bibliográficas

  • Afrin, N., Chen, D.L., Cao, X., Jahazi, M. (2008). Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Mat. Sci. Eng. A 472 (1-2), 179-186. https://doi.org/10.1016/j.msea.2007.03.018
  • Aperador Chaparro, W., Rodríguez Zamora, G., Franco, F. (2012). Comportamiento de la corrosión de aleaciones de magnesio AZ31-B en ambiente marino, modificadas por el proceso de fricción-agitación. Ingeniare. Rev. Chil. Ing. 20 (1), 119-125. https://doi.org/10.4067/S0718-33052012000100012
  • Asmussen, R.M., Binns, W.J., Partovi-Nia, R., Jakupi, P., Shoesmith, D.W. (2016). The stability of aluminum-manganese intermetallic phases under the microgalvanic coupling conditions anticipated in magnesium alloys. Mater. Corros. 67 (1), 39-50. https://doi.org/10.1002/maco.201508349
  • Atik, M., Zarzycki, J. (1994). Protective TiO2-SiO2 coatings on stainless steel sheets prepared by dip-coating. J. Mater. Sci. Lett. 13 (17), 1301-1304. https://doi.org/10.1007/BF00270967
  • Atik, M., De lima Neto, P., Aegerter, M.A., Avaca, L.A. (1995). Sol-gel TiO2-SiO2 films as protective coatings against corrosion of 316L stainless steel in H2SO4 solutions. J. Appl. Electrochem. 25 (2), 142-148. https://doi.org/10.1007/BF00248171
  • Barranco, V., Carmona, N., Galván, J.C., Grobelny, M., Kwiatkowski, L., Villegas, M.A. (2010). Electrochemical study of tailored sol-gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog. Org. Coat. 68 (4), 347-355. https://doi.org/10.1016/j.porgcoat.2010.02.009
  • Barranco, V., El hadad, A.A., Jiménez-Morales, A., Peón, E., Hickman, G.J., Perry, C.C., Galván, J.C. (2014a). Enhancing in vitro biocompatibility and corrosion protection of organic-inorganic hybrid sol-gel films with nanocrystalline hydroxyapatite. J. Mater. Chem. B 2 (24), 3886-3896. https://doi.org/10.1039/C4TB00173G
  • Barranco, V., Jiménez-Morales, A., Hickman, G. J., Galván, J. C., Perry, C. C., El hadad, A.A. (2014b). Triethylphosphite as a network forming agent enhances in vitro biocompatibility and corrosion protection of hybrid organic-inorganic sol-gel coatings for Ti6Al4V alloys. J. Mater. Chem. B 2 (45), 7955-7963. https://doi.org/10.1039/C4TB01175A
  • Behzadnasab, M., Mirabedini, S.M., Kabiri, K., Jamali, S. (2011). Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros. Sci. 53 (1), 89-98. https://doi.org/10.1016/j.corsci.2010.09.026
  • Caruso, R., Diáz-Parralejo, A., Miranda, P., Guiberteau, F. (2001). Controlled preparation and characterization of multilayer sol-gel zirconia dip-coatings. J. Mater. Res. 16 (8), 2391-2398. https://doi.org/10.1557/JMR.2001.0328
  • Chen, Y., Jin, L., Xie, Y. (1998). Sol-Gel processing of organic-inorganic nanocomposite protective coatings. J. Sol-Gel Sci. Techn. 13 (1-3), 735-738. https://doi.org/10.1023/A:1008657408992
  • Córdoba, L., Montemor, M., Coradin, T. (2016). Silane/TiO2 coating to control the corrosion rate of magnesium alloys in simulated body fluid. Corros. Sci. 104, 152-161. https://doi.org/10.1016/j.corsci.2015.12.006
  • De Lima Neto, P., Atik, M., Avaca, L.A., Aegerter, M.A. (1994). Sol-gel coatings for chemical protection of stainless steel. J. Sol-gel Sci. Techn. 2 (1-3), 529-534. https://doi.org/10.1007/BF00486303
  • El-Hadad, A.A., Barranco, V., Samaniego, A., Llorente, I., García-Galván, F.R., Jiménez-Morales, A., Galván, J.C., Feliu Jr., S. (2014). Influence of substrate composition on corrosion protection of sol-gel thin films on magnesium alloys in 0.6 M NaCl aqueous solution. Prog. Org. Coat. 7 (11), 1642-1652. https://doi.org/10.1016/j.porgcoat.2014.05.026
  • Gallardo, J., Duran, A., Garcia, I., Celis, J.P., Arenas, M.A., Conde, A. (2003). Effect of sintering temperature on the corrosion and wear behavior of protective SiO2-based sol-gel coatings. J. Sol-Gel Sci. Techn. 27 (2), 175-183. https://doi.org/10.1023/A:1023702701850
  • García-Heras, M., Jiménez-Morales, A., Casal, B., Galván, J.C., Radzki, S., Villegas, M.A. (2004). Preparation and electrochemical study of cerium-silica sol-gel thin films. J. Alloys Comp. 380 (1-2), 219-224. https://doi.org/10.1016/j.jallcom.2004.03.047
  • Gomez-Romero, P. (2001). Hybrid organic-inorganic materials-in search of synergic activity. Adv. Mater. 13 (3), 163-174. https://doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U
  • Gray, J., Luan, B. (2002). Protective coatings on magnesium and its alloys-a critical review. J. Alloys Compd. 336 (1-2), 88-113. https://doi.org/10.1016/S0925-8388(01)01899-0
  • Guo, X., An, M., Yang, P., Li, H., Su, C. (2009). Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte. J. Alloys Compd. 482 (1-2), 487-497. https://doi.org/10.1016/j.jallcom.2009.04.053
  • Gusmano, G., Montesperelli, G., Rapone, M., Padeletti, G., Cusmà, A., Kaciulis, S., Mezzi, A., Di Maggio, R. (2007). Zirconia primers for corrosion resistant coatings. Surf. Coat. Tech. 201 (12), 5822-5828. https://doi.org/10.1016/j.surfcoat.2006.10.036
  • Hamu, G.B., Eliezer, D., Wagner. L. (2009). The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloys Compd. 468 (1-2), 222-229. https://doi.org/10.1016/j.jallcom.2008.01.084
  • Han, G., Liu, X. (2016). Phase control and formation mechanism of Al-Mn(-Fe) intermetallic particles in Mg-Al-based alloys with FeCl3 addition or melt superheating. Acta Mater. 114, 54-66. https://doi.org/10.1016/j.actamat.2016.05.012
  • Hernández-Alvarado, L.A., Lomelí, M.A., Hernández, L.S., Miranda, J.M., Narváez, L., Díaz, I., García-Alonso, M.C., Escudero, M.L. (2014). Caracterización y comportamiento frente a la corrosión de recubrimientos de ácido fítico, obtenidos por conversión química, sobre substratos de magnesio en solución fisiológica. Rev. Metal. 50 (2), e012. https://doi.org/10.3989/revmetalm.012
  • ISO 8407 (1991). Corrosion of metals and alloys -- Removal of corrosion products from corrosion test specimens. International Organization for Standardization, Genève.
  • Jiménez-Morales, A., Galván, J.C., Aranda, P. (2002). A new silver-ion selective sensor based on a polythiacrown-ether entrapped by sol-gel. Electrochim. Acta 47 (13-14), 2281-2287. https://doi.org/10.1016/S0013-4686(02)00068-3
  • Judeinstein, P., Sanchez, C. (1996). Hybrid organic-inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6 (4), 511-525. https://doi.org/10.1039/JM9960600511
  • Kahraman, M.V., Ku?u, M., Mencelo?lu, Y., Kayaman-Apohan, N., Güngör, A. (2006). The novel use of organo alkoxy silane for the synthesis of organic-inorganic hybrid coatings. J. Non-Cryst. Solids. 352 (21-22), 2143-2151. https://doi.org/10.1016/j.jnoncrysol.2006.02.029
  • Liu, H., Sun, X., Yin, C., Hu, C. (2008). Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151 (2-3), 616-622. https://doi.org/10.1016/j.jhazmat.2007.06.033 PMid:17658689
  • Liu, X., Huang, Y., Yang, J. (2002). Effect of rheological properties of the suspension on the mechanical strength of Al2O3-ZrO2 composites prepared by gelcasting. Ceram. Int. 28 (2), 159-164. https://doi.org/10.1016/S0272-8842(01)00072-4
  • Liu, X., Yue, Z., Romeo, T., Weber, J., Scheuermann, T., Moulton, S., Wallace, G. (2013). Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 9 (10), 8671-8677. https://doi.org/10.1016/j.actbio.2012.12.025 PMid:23313945
  • Luo, J., Cui, N. (1998). Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution. J. Alloys Compd. 264 (1-2), 299-305. https://doi.org/10.1016/S0925-8388(97)00277-6
  • Ma, X., Guo, Q., Xie, Y., Ma, H. (2016). Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers. Chem. Phys. Lett. 652, 148-151. https://doi.org/10.1016/j.cplett.2016.04.004
  • Minti, H., Eyal, M., Reisfeld, R., Berkovic, G. (1991). Quantum dots of cadmium sulfide in thin glass films prepared by sol-gel technique. Chem. Phys. Lett. 183 (3-4), 277-282. https://doi.org/10.1016/0009-2614(91)80063-4
  • Mirabedini, S., Behzadnasab, M., Kabiri, K. (2012). Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos. Part A Appl. Sci. Manuf. 43 (11), 2095-2106. https://doi.org/10.1016/j.compositesa.2012.07.002
  • Mocanu, A., Cernica, I., Tomoaia, G., Bobos, L. D., Horovitz, O., Tomoaia-Cotisel, M. (2009). Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloid Surface A 338 (1-3), 93-101. https://doi.org/10.1016/j.colsurfa.2008.12.041
  • Montoya, P., Martins, C.R., de melo, H.G., Aoki, I.V., Jaramillo, F., Calderón, J.A. (2014). Synthesis of polypyrrole-magnetite/silane coatings on steel and assessment of anticorrosive properties. Electrochim. Acta 124, 100-108. https://doi.org/10.1016/j.electacta.2013.07.105
  • Novak, B.M. (1993). Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv. Mater. 5 (6), 422-433. https://doi.org/10.1002/adma.19930050603
  • Pan, F., Feng, Z., Zhang, X., Tang, A. (2012). The types and distribution characterization of Al-Mn phases in the AZ61 magnesium alloy. Procedia Engineer. 27, 833-839. https://doi.org/10.1016/j.proeng.2011.12.528
  • Park, M., Lee, J. E., Park, C. G., Ho Lee, S., Kwang Seok, H., Bin Choy, Y. (2013). Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium. J. Coat. Technol. Res. 10 (5), 695-706. https://doi.org/10.1007/s11998-013-9474-6
  • Radhakrishnan, S., Siju, C.R., Mahanta, D., Patil, S., Madras, G. (2009). Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta 54 (4), 1249-1254. https://doi.org/10.1016/j.electacta.2008.08.069
  • Rueda, L.M., Hernández, C.A., Viejo, F., Coy, A.E., Mosa, J., Aparicio, M. (2016). Diseño de recubrimientos multicapa barrera-biomimético base TEOS-GPTMS sobre la aleación de magnesio Elektron 21 de potencial aplicación en la fabricación de implantes ortopédicos. Rev. Metal. 52 (3), e075. https://doi.org/10.3989/revmetalm.075
  • Sayilkan, H., ?ener, ?., ?ener, E., Sülü, M. (2003). The sol-gel synthesis and application of some anticorrosive coating materials. Mater. Sci. 39 (5), 733-739. https://doi.org/10.1023/B:MASC.0000023514.74970.73
  • Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S., Möhwald, H. (2006). Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18 (13), 1672-1678. https://doi.org/10.1002/adma.200502053
  • Stein, A., Melde, B.J., Schroden, R.C. (2000). Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Adv. Mater. 12 (19), 1403-1419. https://doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
  • Storey, R.F., Rawlins, J.W. (2014). The Waterborne Symposium. In Proceedings of the forty-first annual international waterborne, highsolids, and powder coating symposium. Lulu Press Inc, New Orleans, LA, February.
  • Sunwoo, S., Kim, J.H., Lee, K.G., Kim, H. (2000). Preparation of ZrO2 coated graphite powders. J. Mater. Sci. 35 (14), 3677-3680. https://doi.org/10.1023/A:1004894404376
  • Supplit, R., Koch, T., Schubert, U. (2007). Evaluation of the anti-corrosive effect of acid pickling and sol-gel coating on magnesium AZ31 alloy. Corros. Sci. 49 (7), 3015-3023. https://doi.org/10.1016/j.corsci.2007.02.006
  • Tamar, Y., Mandler, D. (2008). Corrosion inhibition of magnesium by combined zirconia silica sol-gel films. Electrochim. Acta 53 (16), 5118-5127. https://doi.org/10.1016/j.electacta.2008.02.029
  • Tan, A., Soutar, A.M., Annergren, I.F., Liu, Y.N. (2005). Multilayer sol-gel coatings for corrosion protection of magnesium. Surf. Coat. Tech. 198 (1-3), 478-482. https://doi.org/10.1016/j.surfcoat.2004.10.066
  • Wang, D., Bierwagen, G.P. (2009). Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 64 (4), 327-338. https://doi.org/10.1016/j.porgcoat.2008.08.010
  • Wang, H., Shi, Z. (2011). In vitro biodegradation behavior of magnesium and magnesium alloy. J. Biomed. Mater. Res. 98B (2), 203-209. https://doi.org/10.1002/jbm.b.31769 PMid:21732527
  • Zhang, X., Wang, F., Du, Y. (2007). Effect of nano-sized titanium powder addition on corrosion performance of epoxy coatings. Surf. Coat. Tech. 201 (16-17), 7241-7245. https://doi.org/10.1016/j.surfcoat.2007.01.042
  • Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., Bian, Y. (2010). Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6 (2), 626-640. https://doi.org/10.1016/j.actbio.2009.06.028 PMid:19545650
  • Zhang, L., Xu, C., Song, G., Li, B. (2015). Self-assembly of L-cysteine-gold nanoparticles as chiral probes for visual recognition of 3, 4-dihydroxyphenylalanine enantiomers. RSC Adv. 5 (34), 27003-27008. https://doi.org/10.1039/C5RA01271F
  • Zheludkevich, M., Miranda Salvado, I., Ferreira, M.G.S. (2005). Sol-gel coatings for corrosion protection of metals. J. Mater. Chem. 15 (48), 5099-5111. https://doi.org/10.1039/b419153f
  • Zheludkevich, M.L., Serra, R., Montemor, M.F., Miranda Salvado, I.M., Ferreira, M.G.S. (2006). Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3. Surf. Coat. Tech. 200 (9), 3084-3094. https://doi.org/10.1016/j.surfcoat.2004.09.007
  • Zhong, X., Li, Q., Hu, J., Lu, Y. (2008). Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corros. Sci. 50 (8), 2304-2309. https://doi.org/10.1016/j.corsci.2008.05.016