Análisis empírico del Modelo de Elección Secuencial en Humanos

  1. García-Leal, Óscar
  2. Rodríguez Macías, Enzo Leandro
  3. Camarena Pérez, Héctor Octavio
Revista:
Avances en psicología latinoamericana

ISSN: 1794-4724 2145-4515

Año de publicación: 2018

Volumen: 36

Número: 1

Tipo: Artículo

DOI: 10.12804/REVISTAS.UROSARIO.EDU.CO/APL/A.4869 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Avances en psicología latinoamericana

Resumen

Los resultados encontrados en situaciones de elección entre animales humanos y no humanos son en algunos casos contradictorios. Se han propuesto dos posibles explicaciones: (1) los procesos de elección son diferentes en animales humanos y no humanos o (2) los procedimientos utilizados para el estudio de la elección en unos y otros no son comparables. Particularmente, en humanos se observan mayores tiempos de respuesta a medida que se incrementa el número de alternativas que constituyen el contexto de elección. Esto ha sido interpretado como evidencia a favor de un proceso de comparación entre las alternativas presentadas. Sin embargo, estudios recientes con estorninos han encontrado resultados opuestos. Para dar razón de estos resultados se ha propuesto el Modelo de Elección Secuencial, que no asume la existencia de un proceso de comparación y permite realizar predicciones concretas en situaciones de elección momento a momento. Se diseñó una tarea equivalente a las empleadas con animales no humanos para su presentación en humanos. Los resultados apoyaron parcialmente las predicciones del Modelo de Elección Secuencial si bien no permiten descartar la existencia de un mecanismo de comparación en humanos.

Referencias bibliográficas

  • Aaker, D. A., Bagozzi, R. P., Carman, J. M., & MacLachlan, J. M. (1980). On using Response latency to measure preference. Journal of Marketing Research, XVII, 237-244. doi:10.2307/3150934
  • Aw, J., Monteiro, T., Vasconcelos, M., & Kacelnik, A. (2012). Cognitive mechanisms of risky choice: Is there an evaluation cost? Behavioral Processes, 89, 95-103. doi:10.1016/j.beproc.2011.09.007
  • Bradshaw, C. M., & Szabadi, E. (1992). Choice between delayed reinforcers in discrete-trials schedule: The effect of deprivation level. The Quarterly of Experimental Psychology, 44B (1), 1-16.
  • Craft, B. B. (2016). Risk-sensitive foraging: changes in choice due to reward quality and delay. Animal Behavior, 11, 41-47. doi:10.1016/j.anbehav.2015.09.030
  • Dar-Nimrod, I., Rawn, C. D., Lehman, D. R., & Schwartz, B. (2009). The maximization Paradox: The cost of seeking alternatives. Personality and Individual Differences, 46, 631-635. doi:10.1016/j.paid.2009.01.007
  • Feeney, M. C., & Roberts, W. A. (2008). Rats show preference for delayed rewards on the radial maze. Learning and Behavior, 36(1), 42-54.
  • Green, L., Myerson, J., Lichtman, D., Rosen, S., & Fry, A. (1996). Temporal Discounting in Choice Between Delayed Rewards: The Roles of Age and Income. Psychology and Aging, 11(1), 79-84.
  • Forzano, L. B., & Logue, A. W. (1994). Self-control in adult humans: Comparison of qualitatively different reinforcers. Learning and Motivation, 25, 65–82. doi:10.1006/lmot.1994.1004
  • Freidin, E., Aw, J., & Kacelnik, A. (2009). Sequential and simultaneous choices: Testing the diet selection and sequential choice models. Behavioural Processes, 80, 218-223. doi:10.1016/j.beproc.2008.12.001
  • Hutchinson, J.M.C. (2005). Is more choice always desirable? Evidence and arguments from leks, food selection, and environmental enrichment. Biological Reviews Cambridge Philosophical Society, 80, 73-92.
  • Kacelnik, A., Vaconcelos, M., Monteiro, T., & Aw, J. (2011). Darwin’s “tug-of-war” vs. starlings’ “horse-racing”: How adaptations for sequential encounters drive simultaneous choice. Behavioral Ecology and Sociobiology, 65, 547-558. doi:10.1007/s00265-010-1101-2
  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291.
  • Kollins, S. H. (2003). Delay discounting is associated with substance use in college students. Addictive Behavior, 28, 1167-1173. doi:10.1016/S0306-4603(02)00220-4
  • Locey, M., Hackenberg, T., & Pietras, C. (2009). Human risky choice: Delay sensitivity depends on reinforcer type. Journal of Experimental Psychology, 35(1), 15-22. doi:10.1037/a0012378
  • Logue, A. W., Peña-Correal, T. E., Rodriguez, M. L., & Kabela, E. (1986). Self-control in adult humans: Variation in positive reinforcer amount and delay. Journal of the Experimental Analysis of Behavior, 46, 159-173. doi:10.1901/jeab.1986.46-159
  • Luce, R. D. (1986). Response Times. New York: Oxford University Press.
  • Mazur, J. E. (2010). Distributed versus exclusive preference in discrete-trial choice. Journal of Experimental Psychology: Animal Behavior Processes 36, 321–333. doi:10.1037/a0017588.
  • Mendl, M., Brooks, J., Basse, C., Burman, O., Paul, E., Blackwell, E., & Casey, R. (2010). Dogs showing separation-related behavior exhibit a ‘pesimistic’ cognitive bias. Current Biology, 20 (19), R839-R840. doi:10.1016/j.cub.2010.08.030
  • Mitchell, S. H. (2011). The genetic basis of delay discounting and its genetic relationship to alcohol dependence. Behavioral Processes, 87, 10-17. doi:10.1016/j.beproc.2011.02.008
  • Navarick, D. J. (1996). Choice in humans: Techniques for enhancing sensitivity to reinforcement immediacy. The Psychological Record, 46, 539-554.
  • Navarick, D. J. (1998). Impulsive choice in adults: How consistent are individual differences? The Psychological Record, 48, 665-674.
  • Navarick, D. (2004). Discounting of delayed reinforcers: Measurements by questionnaires versus operant choice procedures. The Psychological Record, 54, 85-94.
  • Pietras, C., & Hackenberg, T. (2003). Human risky choice across four probability distributions. The Psychological Record, 53, 443 – 457.
  • Reimann, M., Castaño, R., Zaichkowsky, J., & Bechara, A. (2012). Novel versus familiar brands: An analysis of neurophysiology, response latency, and choice. Marketing letters, 23, 745-759. doi:10.1007/s11002-012-9176-3
  • Roche, J. P., Timberlake, W., & McCloud, C. (1997). Sensitivity to variability in food amount: risk aversion is seen discrete-choice, but not in free-choice, trials. Behaviour, 134, 1259-1272.
  • Schuck-Paim, C., & Kacelnik, A. (2002). Rationality in risk sensitive foraging choices by starlings. Animal Behaviour, 64, 869-879. doi:10.1006/anbe.2003.2003
  • Shapiro, M.S., Siller, S., & Kacelnik, A. (2008). Simultaneous and sequential choice as a function of reward delay and magnitude: Normative, descriptive and process-based models tested in European starling (Sturnus vulgaris). Journal of Experimental Psychology: Animal Behavior Processes, 34, 75–93. doi:10.1037/0097-7403.34.1.75
  • Sigman, M., & Dehaene, S. (2011). Why does it take time to make a decision? The role of a global workspace in simple decision making. En: O. Vartain y D. Mandel (Eds.), Neuroscience of Decision Making (pp. 11-44). New York: Psychology Press.
  • Tanno, T., Kurashima, R., & Watanabe, S. (2011). Motivational control of impulsive behavior interacts with Choice opportunities. Learning and Motivation, 42, 145-153. doi:10.1016/j.lmot.2011.01.001
  • Tversky, A., & Kahneman, D. (1981). The framing of decision and the psychology of choice. Science, 211, 453-458.
  • Vasconcelos, M., Monteiro, T., Aw, J., & Kacelnik, A. (2010). Choice in multi-alternative environments: A trial by trial implementation of the sequential choice model. Behavioural Processes, 84, 435-439. doi:10.1016/j.beproc.2009.11.010