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Abstract
In nonlinear greedy approximation theory, bidemocratic bases have traditionally
played the role of dualizing democratic, greedy, quasi-greedy, or almost greedy bases.
In this articlewe shift the viewpoint and study them for their own sake, just aswewould
with any other kind of greedy-type bases. In particularwe show that bidemocratic bases
need not be quasi-greedy, despite the fact that they retain a strong unconditionality
flavor which brings them very close to being quasi-greedy. Our constructive approach
gives that for each 1 < p < ∞ the space �p has a bidemocratic basis which is
not quasi-greedy. We also present a novel method for constructing conditional quasi-
greedy bases which are bidemocratic, and provide a characterization of bidemocratic
bases in terms of the new concepts of truncation quasi-greediness and partially demo-
cratic bases.
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1 Introduction and Background

Let X be an infinite-dimensional separable Banach space (or, more generally, a
quasi-Banach space) over the real or complex field F. Throughout this paper, unless
otherwise stated, by a basis of X we mean a norm-bounded sequence X = (xn)∞n=1
that generates the entire space, in the sense that

span(xn : n ∈ N) = X,

and for which there is a (unique) norm-bounded sequence X∗ = (x∗
n)∞n=1 in the dual

space X
∗ such that (xn, x∗

n)
∞
n=1 is a biorthogonal system. We will refer to the basic

sequence X∗ as to the dual basis of X.
We recall that the basis X = (xn)∞n=1 is called democratic if there is a constant �

such that

∥
∥
∥
∥
∥

∑

k∈A

xk

∥
∥
∥
∥
∥

≤ �

∥
∥
∥
∥
∥

∑

k∈B

xk

∥
∥
∥
∥
∥

whenever A and B are finite subsets of N with |A| ≤ |B|. The fundamental function
ϕ : N → [0,∞) of X is then defined by

ϕ(m) = sup
|A|≤m

∥
∥
∥
∥
∥

∑

k∈A

xk

∥
∥
∥
∥
∥

, m ∈ N,

while the dual fundamental function of X is just the fundamental function of its dual
basis, i.e.,

ϕ∗(m) = sup
|A|≤m

∥
∥
∥
∥
∥

∑

k∈A

x∗
k

∥
∥
∥
∥
∥

, m ∈ N.

In general it is not true that if a basis X = (xn)∞n=1 is democratic, then its dual
basis X∗ is democratic as well. For instance, the L1-normalized Haar system is an
unconditional democratic basis of the dyadic Hardy space H1 [27, 28], but the L∞-
normalized Haar system is not democratic in the dyadic BMO-space [24]. In order to
better understand howcertain greedy-like properties dualize,Dilworth et al. introduced
in [16] a strengthened form of democracy. Notice that the elementary computation

m =
(

∑

k∈A

x∗
k

)(
∑

k∈A

xk

)

≤
∥
∥
∥
∥
∥

∑

k∈A

x∗
k

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∑

k∈A

xk

∥
∥
∥
∥
∥

if |A| = m,
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yields the estimate

m ≤ ϕ(m) ϕ∗(m), m ∈ N.

AbasisX = (xn)
∞
n=1 is then said to be bidemocratic if the reverse inequality is fulfilled

up to a constant, i.e., X is bidemocratic if there is a constant C such that

ϕ(m) ϕ∗(m) ≤ C m, m ∈ N.

Amongst other relevant results relative to this kind of bases in Banach spaces, Dilworth
et al. showed in [16] that being quasi-greedy passes to dual bases under the assumption
of bidemocracy (see [16, Theorem 5.4]). Since the dual basis of a bidemocratic basis
is democratic, it follows that the corresponding result also holds for almost greedy and
greedy bases. That is, if a bidemocratic basis is almost greedy (respectively, greedy),
then so is its dual basis.

Despite the instrumental role played by bidemocratic bases as a key that permits
dualizing some greedy-type properties, it is our contention in this paper that these
bases are of interest by themselves and that they deserve to be studied as any other
kind of greedy-like basis. For instance, the unconditionality constants of bidemocratic
bases have been estimated (see Theorem 3.5 below), which sheds some information
on the performance of the greedy algorithm when it is implemented specifically for
these bases.

To undertake our task we must first place bidemocratic bases in the map by relating
them with other types of bases that are relevant in the theory. In this respect the
most important open question is whether bidemocratic bases are quasi-greedy. This
problem is motivated by recent results that show that bidemocratic bases have uniform
boundedness properties of certain (nonlinear) truncation operators thatmake themvery
close to quasi-greedy bases (see [1, Proposition 5.7]). In our language, bidemocratic
bases are truncation quasi-greedy. In Sect. 3 we will solve this question in the negative
by proving that bidemocracy is not in general strong enough to ensure quasi-greediness
and show that for 1 < p < ∞ the space �p has a bidemocratic basis which is not
quasi-greedy.

Before that, we will look for sufficient conditions for a basis to be bidemocratic.
Here one must take into account that if X is bidemocratic then both X and X∗ are
democratic but the converse fails. The first positive result we find in the literature
in the reverse direction goes back to the classical monograph [22] from 1977 (way
before the term democratic basis was even coined!), where Lindenstrauss and Tzafriri
proved that subsymmetric bases, i.e., bases that are unconditional and equivalent to
all of their subbases, are bidemocratic (see [22, Proposition 3.a.6]). Many years later,
Dilworth et al. [16] proved in 2003 the aforementioned Theorem 5.4 from [16], which
tells us that if X and X∗ are quasi-greedy and democratic then X is bidemocratic. In
Sect. 2 we extend this result by relaxing the conditions on the bases X and X∗ while
still attaining the bidemocracy of X.

Turning to quasi-greedy bases, it is natural and consistent with our discussion in
this paper, to further the study of conditional quasi-greedy bases by looking for con-
ditional bidemocratic quasi-greedy bases, i.e., conditional almost greedy bases whose
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dual bases are also almost greedy. The previous methods for building conditional
almost greedy bases in Banach spaces yield either bases whose fundamental func-
tion coincides with the fundamental function of the canonical basis of �1, or bases
whose fundamental function increases steadily enough (formally, bases that have the
upper regularity property and the lower regularity property). In the former case, the
bases are not bidemocratic unless they are equivalent to the canonical �1-basis; in the
latter, the bases are always bidemocratic by [16, Proposition 4.4]. The existence of
conditional bidemocratic quasi-greedy bases which do not have the upper regularity
property seems to be an unexplored area. In Sect. 4 we contribute to this topic by
developing a new method for building bidemocratic, conditional, quasi-greedy bases
with arbitrary fundamental functions.

Throughout this paper we will use standard notation and terminology from Banach
spaces and greedy approximation theory, as can be found, e.g., in [6]. We also refer
the reader to the recent article [1] for other more specialized notation. We next single
out however the most heavily used terminology.

For broader applicability, whenever it is possible we will establish our results in
the setting of quasi-Banach spaces. Let us recall that a quasi-Banach space is a vector
space X over the real or complex field F equipped with a quasi-norm, i.e., a map
‖ · ‖ : X → [0,∞) that satisfies all the usual properties of a norm with the exception
of the triangle law, which is replaced with the condition

‖ f + g‖ ≤ κ(‖ f ‖ + ‖g‖), f , g ∈ X, (1.1)

for some κ ≥ 1 independent of f and g, and moreover (X, ‖ · ‖) is complete. The
modulus of concavity of the quasi-norm is the smallest constant κ ≥ 1 in (1.1). Given
0 < p ≤ 1, a p-Banach space will be a quasi-Banach space whose quasi-norm is
p-subadditive, i.e.,

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p, f , g ∈ X.

By the Aoki-Rolewicz theorem [9], every quasi-Banach space X is locally p-convex
for some 0 < p ≤ 1, i.e., X can be endowed with an equivalent p-subadditive quasi-
norm. While the quasi-norm on a quasi-Banach space needs not be a continuous map
(see [19, p. 566]), p-subadditive quasi-norms always are. For this reason there will be
no loss of generality in assuming that all the quasi-Banach spaces that we will use are
equipped with a continuous quasi-norm.

Some authors have studied the Thresholding Greedy Algorithm, or TGA for short,
formore demanding types of bases thatwewill bring into play on occasion.A sequence
X = (xn)

∞
n=1 of X is said to be a Schauder basis if for every f ∈ X there is a unique

sequence (an)∞n=1 in F such that f = ∑∞
n=1 an xn , where the convergence of the

series is understood in the topology induced by the quasi-norm. If X is a Schauder
basis we define the biorthogonal functionals associated to X by x∗

k( f ) = ak for all
f = ∑∞

n=1 an xn ∈ X and k ∈ N. The partial-sum projections Sm : X → X with
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respect to the Schauder basis X, given by

f 	→ Sm( f ) =
m

∑

n=1

x∗
n( f ) xn, f ∈ X, m ∈ N,

are uniformly bounded, whence we infer that supn ‖xn‖ ‖x∗
n‖ < ∞. Hence, if a

Schauder basis X is semi-normalized, i.e.,

0 < inf
n

‖xn‖ ≤ sup
n

‖xn‖ < ∞,

then (x∗
n)∞n=1 is norm-bounded and so X is a basis in the sense of this paper. If X =

(xn)∞n=1 is a Schauder basis, then the coefficient transform

f 	→ (x∗
n( f ))∞n=1, f ∈ X,

is one-to-one, that is, the basis X is total. In the case when ‖Sm‖ ≤ 1 for all m ∈ N

the Schauder basis X is said to be monotone.
Given A ⊆ N, we will use EA to denote the set consisting of all families (εn)n∈A

in F with |εn| = 1 for all n ∈ A. Given a basis X = (xn)∞n=1 of X, a finite set A ⊆ N

and ε = (εn)n∈A ∈ EA, it is by now customary to use

1ε,A[X, X] = ∑

n∈A εn xn (resp., 1∗
ε,A[X, X] = ∑

n∈A εn x∗
n).

If the basis and the space are clear from context we simply put 1ε,A (resp., 1∗
ε,A),

and if εn = 1 for all n ∈ A we put 1A (resp., 1∗
A). Associated with the fundamental

function ϕ of the basis are the upper super-democracy function of X,

ϕu(m) = ϕu[X, X](m) = sup
{∥
∥1ε,A

∥
∥ : |A| ≤ m, ε ∈ EA

}

, m ∈ N,

and the lower super-democracy function of X,

ϕl (m) = ϕl [X, X](m) = inf
{∥
∥1ε,A

∥
∥ : |A| ≥ m, ε ∈ EA

}

, m ∈ N.

The growth of ϕu is of the same order as ϕ (see [1, inequality (8.3)]), and so the basis
X is bidemocratic if and only if

�b := sup
m∈N

1

m
ϕu[X, X](m)ϕu[X∗, X

∗](m) < ∞

(see [1, Lemma 5.5]), in which case �b is called the bidemocracy constant of X.
The symbol α j � β j for j ∈ J means that there is a positive constant C such

that the families of nonnegative real numbers (α j ) j∈J and (β j ) j∈J are related by the
inequality α j ≤ Cβ j for all j ∈ J . If α j � β j and β j � α j for j ∈ J we say that
(α j ) j∈J and (β j ) j∈J are equivalent, and write α j ≈ β j for j ∈ J .
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We finally recall that a basis X = (xn)∞n=1 of a quasi-Banach space X is said to
dominate another basis Y = ( yn)∞n=1 of a (possibly different) quasi-Banach space Y,
if there is a bounded linear map T from X onto Y with T (xn) = yn for all n ∈ N. If
the map T is an isomorphism, i.e., X dominates Y and vice-versa, we say that X and
Y are equivalent.

2 From Truncation Quasi-greedy to Bidemocratic Bases

Let X = (xn)∞n=1 be a semi-normalized basis for a quasi-Banach space X with dual
basis (x∗

n)
∞
n=1. For each f ∈ X and each B ⊆ N finite, put

U( f , B) = min
n∈B

|x∗
n( f )|

∑

n∈B

sign(x∗
n( f )) xn .

Given m ∈ N ∪ {0}, the m-th-restricted truncation operator Um : X → X is defined
as

Um( f ) = U( f , Am( f )), f ∈ X,

where A = Am( f ) ⊆ N is a greedy set of f of cardinality m, i.e., |x∗
n( f )| ≥ |x∗

k( f )|
whenever n ∈ A and k /∈ A. The set A depends on f and m, and may not be unique;
if this happens we take any such set. We put

	u = 	u[X, X] = sup{‖U( f , B)‖: B greedy set of f , ‖ f ‖ ≤ 1}.

If the quasi-norm is continuous, applying a perturbation technique yields

	u = sup
m

‖Um‖.

Thus, the basis X is said to be truncation quasi-greedy if (Um)∞m=1 is a uniformly
bounded family of (nonlinear) operators, or equivalently, if and only if 	u < ∞. In
this case we will refer to 	u as the truncation quasi-greedy constant of the basis.

Quasi-greedy bases are truncation quasi-greedy (see [16, Lemma 2.2] and [1, The-
orem 4.13]), but the converse does not hold in general. The first case in point appeared
in [15, Example 4.8], where the authors constructed a basis that dominates the unit
vector system of �1,∞ (hence it is truncation quasi-greedy by [1, Proposition 9.4]) but
it is not quasi-greedy. In spite of that, truncation quasi-greedy bases still enjoy most
of the nice unconditionality-like properties of quasi-greedy bases. For instance, they
are quasi-greedy for large coefficients (QGLC for short), suppression unconditional
for constant coefficients (SUCC for short), and lattice partially unconditional (LPU
for short). See [1, Sections 3 and 4] for the precise definitions and the proofs of these
relations.

In turn, if X is bidemocratic then both X and its dual basis X∗ are truncation quasi-
greedy ([1, Proposition 5.7]). In this section we study the converse implication, i.e.,
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we want to know which additional conditions make a truncation quasi-greedy basis
bidemocratic. A good starting point is the following result, which uses the upper reg-
ularity property (URP for short) and which is valid only for Banach spaces. Following
[16] we shall say that a basis has the URP if there is an integer b ≥ 3 so that its
fundamental function ϕ satisfies

2ϕ(bm) ≤ bϕ(m), m ∈ N. (2.1)

Theorem 2.1 (see [1, Lemma 9.8 and Proposition 10.17(iii)]) Let X be a basis of a
Banach space X. Suppose that X is democratic, truncation quasi-greedy, and has the
URP. Then X is bidemocratic (and so X∗ is truncation quasi-greedy too).

Can we do any better? Dilworth et al. characterized quasi-greedy bidemocratic
bases as those quasi-greedy bases whose dual bases are quasi-greedy and such that
both the basis and its dual basis fulfil an additional condition called conservativeness
([16, Theorem5.4]). Recall that a basis is said to be conservative if there is a constantC
such that ‖1A‖ ≤ C‖1B‖ whenever |A| ≤ |B| and max(A) ≤ min(B). Our objection
to this concept is that it is not preserved under rearrangements of the basis. Thus, since
the greedy algorithm is “reordering invariant” (i.e., if π is a permutation of N, the
greedy algorithm with respect to the bases (xn)∞n=1 and (xπ(n))

∞
n=1 is the same) when

working with conservative bases we are bringing an outer element into the theory.
This is the reason why we establish our characterization of bidemocratic bases below
in terms of a reordering invariant new class of bases which is more general than the
class of conservative bases and which we next define.

Definition 2.2 We say that a basis is partially democratic if there is a constant C such
that for each D ⊆ N finite there is D ⊆ E ⊆ N finite such that ‖1A‖ ≤ C‖1B‖
whenever A ⊆ D and B ⊆ N\E satisfy |A| ≤ |B|. In this case we will refer to the
optimal constant C as the partial democracy constant of the basis.

Lemma 2.3 and Proposition 2.4 are well-known but we re-state them for the sake
of recording the precise constants in the respective estimates. From now on we will
use γ = 2 if F = R or γ = 4 if F = C.

Lemma 2.3 (See [1, Proposition 4.16] or [4, Lemma5.2]) Suppose thatX = (xn)∞n=1 is
a truncation quasi-greedy basis of a quasi-Banach space X. Then there is a constant C
depending on the modulus of concavity of X and the truncation quasi-greedy constant
of X such that

∥
∥
∥
∥
∥

∑

n∈A

an xn

∥
∥
∥
∥
∥

≤ C‖ f ‖

for all f ∈ X, all A ⊆ N finite, and all finite families (an)n∈A such that
maxn∈A |an| ≤ minn∈A |x∗

n( f )|. In the case when X is a p-Banach space, we can
choose C = γ 1/p(2p − 1)−1/p	2

u, where 	u is the truncation quasi-greedy con-
stant of X. If, in addition, sign(an) = sign(x∗

n( f )) for all n ∈ A, we can choose
C = (2p − 1)−1/p	2

u.
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Proposition 2.4 (See [1, Proposition 4.19]) Let X = (xn)
∞
n=1 be a truncation quasi-

greedy basis of a Banach space X. Then, there is a constant 	 such that for every
A ⊆ N finite and all ε ∈ EA there is f ∗ ∈ span(x∗

n : n ∈ A) with ‖ f ∗‖ = 1 such that

‖1ε,A‖ ≤ 	| f ∗(1ε,A)|.

In fact, the inequality holds with 	 = 	2
u.

Theorem 2.5 Let X be a basis of a Banach space X. Suppose that both X and X∗ are
truncation quasi-greedy and partially democratic. Then X is bidemocratic.

Proof We will customize the proof of [16, Theorem 5.4] to suit our more general
statement. Set ϕu = ϕu[X, X] and ϕu

∗ = ϕu[X∗, X
∗]. Let �d and �∗

d be the partial
democracy constants of X and X∗ respectively, and let 	u and 	∗

u be the truncation
quasi-greedy constant of X and X∗, respectively. Given m ∈ N, fix 0 < ε < 1 and
choose sets B1, B2 and signs ε ∈ EB1 , ε

′ ∈ EB2 so that |B1| ≤ m, |B2| ≤ m, and

‖1ε,B1‖ ≥ (1 − ε)ϕu(m) and ‖1∗
ε′,B2

‖ ≥ (1 − ε)ϕu
∗(m). (2.2)

Use partial democracy to pick D ⊆ N disjoint with B1 ∪ B2 such that |D| = 2m,
‖1B‖ ≤ �d‖1A‖, and ‖1∗

B‖ ≤ �∗
d‖1∗

A‖ whenever B ⊆ B1 ∪ B2 and A ⊆ D satisfy
|B| ≤ |A|.

Using (2.2) and partial democracy we obtain that for all A ⊆ D with |A| ≥ m,

(1 − ε)ϕu(m) ≤C‖1A‖, and (1 − ε)ϕu
∗(m) ≤ C∗‖1∗

A‖, (2.3)

whereC = γ�d andC∗ = γ�∗
d . Taking into account (2.3), Proposition 2.4 gives that

for such subsets A of N the set

KA =
{

f ∗ ∈ span(x∗
n : n ∈ A) : ‖ f ∗‖ ≤ 1, f ∗(1A) ≥ (1 − ε)ϕu(m)

C	2
u

}

is convex, closed, and nonempty. Note thatKA increases with A, and that for f ∗ ∈ KA,

∑

n∈A

| f ∗(xn)| = f ∗ (

1ε( f ∗),A

)

≤ ‖ f ∗‖
∥
∥
∥1ε( f ∗),A

∥
∥
∥ ≤ ϕu(|A|). (2.4)

Pick f ∗ ∈ KD that minimizes
∑

n∈D | f ∗(xn)|2. The geometric properties of min-
imizing vectors on convex subsets of Hilbert spaces yield

∑

n∈D

| f ∗(xn)|2 ≤ �
(

∑

n∈D

f ∗(xn)g∗(xn)

)

, g∗ ∈ KD. (2.5)

Let E be a greedy set of f ∗ with |E | = m, and put A = D\E . Since X∗ is truncation
quasi-greedy, by Lemma 2.3 we have

min
n∈E

| f ∗(xn)| ‖1∗
E‖ ≤ γ (	∗

u)2‖ f ∗‖ ≤ γ (	∗
u)2. (2.6)
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Pick g∗ ∈ KA. Combining (2.5), (2.4), (2.6) and (2.3) gives

∑

n∈D

| f ∗(xn)|2 ≤
∑

n∈A

| f ∗(xn)||g∗(xn)|

≤ min
n∈E

| f ∗(xn)|
∑

n∈A

|g∗(xn)|

≤ γ (	∗
u)2

‖1∗
E‖ ϕu(m)

≤ γ (	∗
u)2C∗

(1 − ε)ϕu
∗(m)

ϕu(m).

Hence, by the Cauchy–Bunyakovsky–Schwarz inequality,

(1 − ε)2(ϕu(m))2 ≤ C2	4
u | f ∗(1D)|2

≤ C2	4
u

(
∑

n∈D

| f ∗(xn)|
)2

≤ 2C2	4
um

∑

n∈D

| f ∗(xn)|2

≤ 2mγ
C2C∗	4

u(	∗
u)2

(1 − ε)

ϕu(m)

ϕu
∗(m)

.

Since ε is arbitrary, we obtain

ϕu(m)ϕu
∗(m) ≤ 2γ 4�2

d�∗
d	4

u(	∗
u)2m,

and so the basis is bidemocratic. ��
We remark that Theorem 2.5 is valid only for Banach spaces, i.e., it cannot be

extended when the local convexity of the space is lifted. Indeed, for 0 < p < 1
the canonical basis (en)∞n=1 of �p is not bidemocratic despite the fact that (en)∞n=1 is
democratic and unconditional and its dual basis (the standard unit vector basis of c0)
is also democratic. Theorem 2.5 provides a characterization of bidemocratic bases in
Banach spaces in terms of truncation quasi-greedy and partially democratic bases. To
be precise, we have the following.

Corollary 2.6 (cf. [16, Theorem 5.4]) Let X be a basis of a Banach space X. The
following are equivalent:

(i) X is bidemocratic.
(ii) X and X∗ are bidemocratic.

(iii) X and X∗ are truncation quasi-greedy and superdemocratic.
(iv) X and X∗ are truncation quasi-greedy and democratic.
(v) X and X∗ are truncation quasi-greedy and conservative.

(vi) X and X∗ are truncation quasi-greedy and partially democratic.
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Proof The implication (i) �⇒ (ii) follows from [1, Lemma 5.6], while the implica-
tion (ii) �⇒ (iii) follows from combining [1, Proposition 5.7] with [16, Proposition
4.2]. The chain of implications (iii) �⇒ (iv) �⇒ (v) �⇒ (vi) is immediate. Our
contribution here is the implication (vi) �⇒ (i), which is precisely Theorem 2.5. ��

3 Existence of Bidemocratic Non-quasi-greedy Bases

This section is geared towards proving the existence of bidemocratic bases which are
not quasi-greedy. To that end, let us first set theminimum requirements on terminology
we need for this section.

Suppose X = (xn)∞n=1 is a democratic basis of a quasi-Banach space X. We shall
say thatX has the lower regularity property (LRP for short) if there is an integer b ≥ 2
such

2ϕ(m) ≤ ϕ(bm), m ∈ N. (3.1)

In a sense, the LRP is the dual property of the URP. Abusing the language we will say
that a sequence has the URP (respectively, LRP), if its terms verify the condition (2.1)
(respectively, (3.1)). Note that (ϕ(m))∞m=1 has the LRP if and only if (m/ϕ(m))∞m=1
has the URP. If (ϕ(m))∞m=1 has the LRP then there is a > 0 and C ≥ 1 such that

ma

na
≤ C

ϕ(m)

ϕ(n)
, n ≤ m. (3.2)

In the case when ϕ is non-decreasing and the sequence (ϕ(m)/m)∞m=1 is non-
increasing, ϕ has the LRP if and only if the weight w = (wn)

∞
n=1 defined by

wn = ϕ(n)/n is a regular weight, i.e., it satisfies the Dini condition

sup
n

1

nwn

n
∑

k=1

wk < ∞

(see [1, Lemma 9.8]), in which case

m
∑

n=1

ϕ(n)

n
≈ ϕ(m), m ∈ N. (3.3)

For instance, the power sequence (m1/p)∞m=1 has the URP if and only if 1 < p ≤ ∞,
and has the LRP for all 0 < p < ∞. Consequently, the weight w = (n−a)∞n=1 is
regular for all 0 < a < 1.

We will need the following elementary lemma involving the harmonic numbers

Hm =
m

∑

n=1

1

n
, m ∈ N ∪ {0}.
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Lemma 3.1 For each 0 < a < 1 there exists a constant C(a) such that

S(a, r , t) :=
t

∑

k=r+1

k−a(k − r)a−1 ≤ C(a)(Ht − Hr ), t ≥ 2r .

Proof The inequality is trivial for r = 0, so we assume that r ≥ 1. If we define
f : [1,∞) → [0,∞) by f (u) = u−a(u − 1)a−1, we have

k−a(k − r)a−1 ≤ x−a(x − r)a−1 = 1

r
f
( x

r

)

, k ∈ N, x ∈ [k − 1, k].

Hence,

S(a, r , t) ≤
∫ t

r
f
( x

r

) dx

r
=

∫ t/r

1
f (u) du.

Since f is integrable on [1, 2] and f (u) � 1/u for u ∈ [2,∞), there is a constant C1
such that S(a, r , t) ≤ C1 log(t/r). Taking into account that Ht −Hr ≥ (t−r)/t ≥ 1/2,
and that there is a constant C2 such that logm ≤ Hm ≤ logm + C2 for all m ∈ N we
are done. ��

For further reference, we record an easy lemma that we will use several times. Note
that it applies in particular to the harmonic series.

Lemma 3.2 Let
∑∞

n=1 cn be a divergent series of nonnegative terms. Suppose that
limn cn = 0. Then, for every m ∈ N ∪ {0} and 0 ≤ a < b, there are m ≤ r < s such
that a ≤ ∑s

n=r+1 cn < b.

We will also use the following well-known lemma. Note that it could be used to
prove the divergence of the harmonic series.

Lemma 3.3 (See [25, Exercise 11, p. 84]) Let
∑∞

n=1 cn be a divergent series of non-
negative terms. Then the (smaller) series

∞
∑

n=1

cn
∑n

k=1 ck

also diverges.

Lorentz sequence spaces d1,q(w) play a relevant role in the qualitative study of
greedy-like bases. Let w = (wn)

∞
n=1 be a weight (i.e., a sequence of nonnegative

numbers with w1 > 0) whose primitive weight (sm)∞m=1, defined by sm = ∑m
n=1 wn ,

is unbounded and doubling, i.e.,

sup
m

s2m

sm
< ∞.

123



Constructive Approximation

Given 0 < q ≤ ∞, we will denote by d1,q(w) the quasi-Banach space of all f ∈ c0
whose non-increasing rearrangement (an)∞n=1 satisfies

‖ f ‖d1,q (w) =
( ∞

∑

n=1

aq
n sq−1

n wn

)1/q

< ∞,

with the usual modification if q = ∞. For power weights this definition yields the
classical Lorentz sequence spaces �p,q . To be precise, if w = (n1/p−1)∞n=1 for some
0 < p < ∞, then, up to equivalence of quasi-norms, d1,q(w) = �p,q , and if (an)∞n=1
is the non-increasing rearrangement of f ∈ c0,

‖ f ‖�p,q =
( ∞

∑

n=1

aq
n nq/p−1

)1/q

.

For a quick introduction to Lorentz sequence spaces we refer the reader to [1, Section
9.2]. Here we gather the properties of these spaces that are most pertinent for our
purposes. Although it is customary to designate them after the weight w, it must be
conceded that as a matter of fact they depend on its primitive weight (sm)∞m=1 rather
than on w. That is, given weights w = (wn)∞n=1 and w′ = (w′

n)∞n=1 with primitive
weights (sm)∞m=1 and (s′

m)∞m=1, we have d1,q(w) = d1,q(w′) (up to equivalence of
quasi-norms) if and only if sm ≈ s′

m for m ∈ N. The fundamental function of the
unit vector system of d1,q(w) is equivalent to (sm)∞m=1, hence essentially it does not
depend on q. We have

d1,p(w) ⊆ d1,q(w), 0 < p < q ≤ ∞.

To show that this inclusion is strict we can for instance use the sequence

Hm[w] =
m

∑

n=1

wn

sn
, m ∈ N,

and notice that limm Hm[w] = ∞ by Lemma 3.3, and

∥
∥
∥
∥
∥

m
∑

n=1

1

sn
en

∥
∥
∥
∥
∥

d1,q (w)

= (Hm[w])1/q , m ∈ N, 0 < q < ∞. (3.4)

For 0 < q < 1, the quasi-Banach space d1,q(w) is locally q-convex. In the case
when q ≥ 1, the space d1,q(w) is locally r -convex for all r < 1 but it is not locally
convex in general. It is worthwhile mentioning that imposing some regularity to the
primitive weight (sm)∞m=1 makes a difference. In fact, if (sm)∞m=1 has the URP then
d1,q(w) is locally convex for all 1 ≤ q ≤ ∞. The following lemma shows that the
LRP is also of interest when dealing with Lorentz sequence spaces.
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Lemma 3.4 Let 0 < q ≤ ∞, and let (sm)∞m=1 be the primitive weight of a weight
w. Suppose that (sm)∞m=1 has the LRP and that the weight w′ = (w′

n)
∞
n=1 given by

w′
n = sn/n is non-increasing. Then:

(i) d1,q(w) = d1,q(w′);
(ii) for 0 ≤ r ≤ t < ∞, Ht [w′] − Hr [w′] ≈ Ht − Hr and
(iii) A(r , t) := ∥

∥
∑t

n=r+1 s−1
n en

∥
∥

d1,q (w)
� max{1, (Ht − Hr )

1/q}.
Proof The first part follows from (3.3). Let (s′

m)∞m=1 be the primitive weight of w′.
The equivalence (3.3) also yields

w′
n

s′
n

≈ 1

n
, n ∈ N.

Hence, (ii) holds. Pick 0 < a < 1/q such that (3.2) holds. On one hand, if t ≤ 2r +1,

A(r , t) ≤ 1

sr+1

∥
∥
∥
∥
∥

t
∑

n=r+1

en

∥
∥
∥
∥
∥

d1,q (w)

� st−r

sr+1
≤ 1.

On the other hand, if t ≥ 2r using again (i) we obtain

A(r , t) ≈
(

t
∑

k=r+1

sq
k−r

sq
k (k − r)

)1/q

�
(

t
∑

k=r+1

(k − r)aq

kaq(k − r)

)1/q

.

Hence, applying Lemma 3.1 yields the desired inequality. ��
To contextualize the assumptions in Theorem 3.6 below we must take into account

that any basis X of an r -Banach space X, 0 < r ≤ 1, is dominated by the unit
vector basis of the Lorentz sequence space d1,r (w), where the primitive weight of w

is ϕu[X, X]. Although it is not central in our study, in the proof of Theorem 3.6 we
will keep track of the quasi-greedy parameters of the basis,

gm[X, X] = sup{‖SA[X, X]( f )‖: A greedy set of f ∈ BX, |A| = m},

where for a finite subset A ⊆ N, we let SA = SA[X, X] : X → X denote the coordinate
projection on A, i.e.,

SA( f ) =
∑

n∈A

x∗
n( f ) xn, f ∈ X.

The quasi-greedy parameters are bounded above by the unconditionality parameters

km = km[X, X] := sup
|A|=m

‖SA‖, m ∈ N,

which are used to quantify how far the basis is from being unconditional. Thus, the
following result exhibits that bidemocratic bases are close to being quasi-greedy.
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Theorem 3.5 Let X be a p-Banach space, 0 ≤ p ≤ 1. IfX is a truncation quasi-greedy
basis of of X, then

km[X, X] � (logm)1/p, m ≥ 2.

In particular, the estimate holds if X is bidemocratic.

Proof The first part is [4, Theorem 5.1], and we can obtain the result for bidemocratic
bases applying [1, Proposition 5.7]. ��
Since (gm)∞m=1 needs not be non-decreasing (see [23, Proposition 3.1]), we also set

gm = gm[X, X] = sup
k≤m

gk .

Of course, X is quasi-greedy if and only if supm gm = supm gm < ∞, and X is
unconditional if and only if supm km < ∞.

We will use the fact that quasi-greedy bases are in particular total bases (see [1,
Corollary 4.5]) to prove the advertised existence of bidemocratic non-quasi-greedy
bases.

Theorem 3.6 Let 1 < q < ∞, and let w = (wn)
∞
n=1 be a non-increasing weight

whose primitive weight (sm)∞m=1 is unbounded. Let X be a quasi-Banach space with
a basis X. Suppose that X is bidemocratic with ϕu[X, X](m) ≈ sm for m ∈ N, and
that X has a subsequence dominated by the unit vector basis of d1,q(w). Then X has
a non-total bidemocratic basis Y with

ϕu[Y, X](m) ≈ sm, m ∈ N.

Moreover, if (sm)∞m=1 has the LRP,

gm[Y, X] � (logm)1/q ′
, m ≥ 2,

where 1/q + 1/q ′ = 1.

Proof Choose a subsequence
(

xη(k)

)∞
k=1 of X = (xn)∞n=1 so that η(1) ≥ 2. The linear

operator T : d1,q(w) → X given by

T (ek) = xη(k), k ∈ N,

is bounded. With the aid of T we proceed to perturb the basis X in such a way that
it loses its totality while preserving bidemocracy. For each n ∈ N, n ≥ 2, define
yn = xn + zn , where

zn =
{

wk x1 if n = η(k),

0 otherwise.
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It is clear that ( yn, x∗
n)∞n=2 is a biorthogonal system. Moreover, Y := (

yn

)∞
n=2 and

Y∗ := (x∗
n)

∞
n=2 are norm-bounded because X, X∗, and Z = (zn)∞n=2 are. Thus, in

order to prove that Y is a basis of X with dual basis Y∗ it suffices to prove that x1
belongs to the closed linear span of Y. To that end, we note that for each m ∈ N we
have

fm := 1

Hm[w]
m

∑

k=1

1

sk
yη(k)

= x1 + 1

Hm[w]
m

∑

k=1

1

sk
xη(k)

= x1 + 1

Hm[w]T (gm),

where gm = ∑m
k=1 s−1

k ek . By (3.4),

‖ fm − x1‖ ≤ ‖T ‖(Hm[w])−1/q ′
, m ∈ N.

Since by Lemma 3.3, limm Hm[w] = ∞ we obtain that limm fm = x1.
Since y∗

n (x1) = 0 for all n ≥ 2, Y is not a total basis. In order to prove that it is
bidemocratic, we must show that ϕu[Y, X](m) � sm and ϕu[Y∗, X

∗](m) � m/sm for
m ∈ N. The latter inequality is a ready consequence of the estimate ϕu[X∗, X

∗](m) �
m/sm for m ∈ N, which holds because X is bidemocratic. To prove the former, we
note that, since w is non-increasing,

ϕu[Z, X](m) = ‖x1‖
m

∑

k=1

wk ≈ sm, m ∈ N.

Consequently,

ϕu[Y, X](m) � ϕu[X, X](m) + ϕu[Z, X](m) � sm, m ∈ N.

To estimate the quasi-greedy parameters in the case when (sm)∞m=1 has the LRP, we
appeal to Lemma 3.2 to pick for each m ≥ 2 natural numbers r = r(m) and s = s(m)

with m ≤ r ≤ s, and

Hm[w] ≤ Hs[w] − Hr [w] ≤ (Hm[w])1/q + Hm[w]. (3.5)

Moreover, since (sn/n)∞n=1 is non-increasing, thanks to parts (i) and (ii) of Lemma 3.4
we may assume without loss of generality that

Ht [w] − Hr [w] ≈ Ht − Hr , 0 ≤ r ≤ t . (3.6)
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Set hm = ∑s
k=r+1 s−1

k ek and

um = 1

Hm[w]

(
m

∑

k=1

1

sk
yη(k) −

s
∑

k=r+1

1

sk
yη(k)

)

= 1

Hm[w] (T (gm) − T (hm) + (Hm[w] − Hs[w] + Hr [w])x1) .

By Lemma 3.4 (iii), (3.4), (3.6) and (3.5),

max{‖gm‖, ‖hm‖, |Hs[w] − Hr [w] − Hm[w]|} � H1/q
m , m ∈ N.

Hence, ‖um‖ � H−1/q ′
m for m ∈ N. Since Am := {η(1), . . . , η(m)} is a greedy set of

um with respect to Y, and

‖SAm [Y, X](um)‖ = ‖ fm‖ ≈ 1, m ∈ N,

we are done. ��
Corollary 3.7 Let X be a Banach space with a Schauder basis. Suppose that X has
a complemented subspace isomorphic to �p,q , where p, q ∈ (1,∞). Then X has a
non-total bidemocratic basis Y with

ϕu[Y, X](m) ≈ m1/p, m ∈ N,

and

gm[Y, X] � (logm)1/q ′
, m ≥ 2.

Proof An application of the Dilworth-Kalton-Kutzarova method, or DKK-method
for short (see [2, 15]), yields a bidemocratic Schauder basis of X with fundamental
function equivalent to (m1/p)∞m=1 (see [2]). The direct sum of this basis with the unit
vector system of �p,q is a bidemocratic Schauder basis ofX⊕�p,q ≈ X that possesses
a subsequence equivalent to the unit vector basis of �p,q . Applying Theorem 3.6 we
are done. ��

Note that Corollary 3.7 can be applied with 1 < p = q < ∞, so that �p,q = �p.
Hence as a consequence we obtain the result that we announced in the Introduction.

Theorem 3.8 Let 1 < p < ∞. Then �p has a bidemocratic non-total (hence, non-
quasi-greedy) basis.

Theorem 3.8 leads us naturally to the question about the existence of bidemocratic
non-total bases in �1 and c0. We make a detour from our route to solve both questions
in the negative. For that we will need to apply the arguments that follow, keeping in
mind that �1 = (c0)∗ is a GT-space (see [21]).
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Proposition 3.9 Let X be a quasi-Banach space, and let X = (xn)∞n=1 and Y =
(x∗

n)∞n=1 be sequences in X and X
∗, respectively. Suppose that (xn, x∗

n)∞n=1 is a
biorthogonal system and that

ϕu[X, X](m)ϕu[Y, X
∗](m) ≤ Cm, m ∈ N,

for some constant C. Then

‖1ε,A[X, X]‖ ≤ C‖ f ‖,

for all A ⊆ N finite, all ε ∈ EA, and all f ∈ X such that |{n ∈ N : |x∗
n( f )| ≥ 1}| ≥ |A|.

Proof In the case when X spans the whole space X, this proposition says that any
bidemocratic basis is truncation quasi-greedy. In fact, the proof of [1, Proposition 5.7]
gives this slightly more general result. ��
Theorem 3.10 Let X be a GT-space and let X = (xn)∞n=1 and (x∗

n)∞n=1 be sequences
in X and X

∗, respectively. Suppose that (xn, x∗
n)

∞
n=1 is a biorthogonal system and that

there is a constant C such that

‖1ε,A[X, X]‖ ≤ C‖ f ‖ (3.7)

whenever A ⊆ N and f ∈ X satisfy |x∗
n( f )| ≥ 1 ≥ |x∗

k( f )| for (n, k) ∈ A × (N\A),
and ε = (εn)n∈A ∈ EA is defined by x∗

n( f ) = |x∗
n( f )| εn. Then, ϕl [X, X](m) � m

for m ∈ N.

Proof In the case when X spans the whole space X, this theorem says that any trun-
cation quasi-greedy basis of a GT-space is democratic with fundamental function
equivalent to (m)∞m=1 (see [5, Theorem 4.3]). As a matter of fact, the proof of [5,
Theorem 4.3] as well as the proofs of Lemmas 2.2 and 4.2 of [5] on which it relies,
work for basic sequences (xn)∞n=1 whose biorthogonal functionals extend to function-
als (x∗

n)∞n=1 defined on the whole space X in such a way that condition (3.7) holds.
��

Theorem 3.11 Let X be a bidemocratic basis of a Banach space X.

(i) If X is a GT-space, then X is equivalent to the canonical basis of �1.
(ii) If X

∗ is a GT-space, then X is equivalent to the canonical basis of c0.

Proof Suppose that X (resp., X
∗) is a GT-space. By Theorem 3.10 ϕl [X, X] (resp.,

ϕl [X∗, X
∗]) is equivalent to (m)∞m=1. Hence, ϕu[X∗, X

∗] (resp.,ϕu[X, X]) is bounded.
This readily gives that X∗ (resp. X) is equivalent to the canonical basis of c0. To
conclude the proof of (i), we infer that X∗∗ is equivalent to the canonical basis B�1 of
�1. Since B�1 dominates X and X dominates X∗∗ we are done. ��

It is known that some results involving the TGA work for total bases but break
down if we drop this assumption (see, e.g., [10, Theorem 4.2 and Example 4.5]). In
view of this, another question springing from Theorem 3.8 is whether working with
total bases makes a difference, i.e., whether bidemocratic total bases are quasi-greedy.
We solve this question in the negative by proving the following theorem.
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Theorem 3.12 Let 1 < p < ∞. Then any infinite-dimensional subspace of �p has a
further subspace with a bidemocratic non-quasi-greedy total basis.

Theorem 3.12 will follow as a consequence of the following general result.

Theorem 3.13 Let w = (wn)
∞
n=1 be a weight, and suppose that its primitive weight

(sm)∞m=1 has the LRP and that (sm/m)∞m=1 is non-increasing. Let X be a Banach
space with a total basis X. Suppose that X is bidemocratic with ϕu[X, X](m) ≈ sm

for m ∈ N, and thatX has a subsequence dominated by the unit vector basis of d1,q(w)

for some q > 1. Then X has a subspace Y with a basis Y satisfying the following
properties:

(i) Y is bidemocratic with ϕu[Y, Y](m) ≈ sm for m ∈ N.
(ii) Y is total.
(iii) Y is not quasi-greedy.
(iv) Y is not Schauder in any order.

Proof Choose a subsequence
(

xη( j)
)∞

j=1 of X = (xn)∞n=1 so that N\η(N) is infinite
and the linear operator T : d1,q(w) → X given by

T
(

e j
) = xη( j), k ∈ N,

is bounded. Let ψ : N → N be the increasing sequence defined by ψ(N) = N\η(N).
Since the harmonic series divergeswe can recursively construct an increasing sequence
(tk)∞k=0 of natural numbers with t0 = 0 such that, if we put

	k = Htk − Htk−1,

then limk 	k = ∞. For each j ∈ N define y j = xη( j) + z j , where

z j = s j

j
xψ(k), k ∈ N, tk−1 < j ≤ tk .

It is clear that ( y j , x
∗
η( j))

∞
j=1 is a biorthogonal system. Thus, to see that Y := (

y j

)∞
j=1

satisfies (i) it suffices to prove that, if Z = (z j )
∞
j=1, ϕu[Z, X](m) � sm for m ∈ N.

Set C1 = supn ‖xn‖. For every A ⊆ N with |A| = m < ∞ and ε ∈ EA we have

‖1ε,A[Z, X]‖ ≤ C1

∑

j∈A

s j

j
≤ C1

m
∑

j=1

s j

j
� sm .

Let us see that Y is a total basis of Y = [Y]. Set

z∗k = x∗
ψ(k) −

tk∑

j=1+tk−1

s j

j
x∗

η( j), k ∈ N.
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We have z∗k( y j ) = 0 for all j and k ∈ N. Therefore z∗k( f ) = 0 for all f ∈ Y and
k ∈ N. Pick f ∈ Y and suppose that x∗

η( j)( f ) = 0 for all j ∈ N. We infer that
x∗

ψ(k)( f ) = 0 for all k ∈ N. Since X is a total basis, f = 0.
To prove that Y is neither a quasi-greedy basis nor a Schauder basis under any

reordering, we pick a permutation π of N. For each k ∈ N, choose Ak ⊆ Dk :=
[1 + tk−1, tk] ∩ N minimal with the properties

l := max(π−1(Ak)) < min(π−1(Dk\Ak)) and �k :=
∑

j∈Ak

1

j
>

	k

2
.

By construction,

	k

2
≥ �k − 1

π(l)
≥ �k − 1.

Then, if we set

�k :=
∑

j∈Dk\Ak

1

j
= 	k − �k,

we have �k − �k = −	k + 2�k ∈ (0, 2]. Also by construction, if we set

gk =
∑

j∈Ak

1

s j
y j , hk =

∑

j∈Dk\Ak

1

s j
y j , k ∈ N,

then gk is a partial-sum projection of fk := gk − hk with respect to the rearranged
basis ( yπ(i))

∞
i=1. Moreover, in the case when π is the identity map, gk is a greedy

projection of fk . On one hand, if we set

f ′
k =

∑

j∈Ak

1

s j
e j −

∑

j∈Dk\Ak

1

s j
e j ,

we have fk = T ( f ′
k) + (�k − �k)xψ(k) for all k ∈ N. By Lemma 3.4 (iii),

‖ f ′
k‖d1,q (w) =

∥
∥
∥
∥
∥
∥

tk∑

j=1+tk−1

1

s j
e j

∥
∥
∥
∥
∥
∥

d1,q (w)

� max{1,	1/q
k } ≈ 	

1/q
k .

Hence, ‖ fk‖ � 	
1/q
k for k ∈ N. On the other hand, since x∗

ψ(k)(gk) = �k , we have

	k < 2�k ≤ 2C2‖gk‖
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where C2 = supn ‖x∗
n‖. Summing up,

‖gk‖
‖ fk‖ � 	

1/q ′
k −−−→

k→∞ ∞.

��
Corollary 3.14 There is a bidemocratic total basis of �2 that is neither Schauder under
any rearrangement of the terms nor quasi-greedy.

Let us notice that the bases we construct to prove Theorem 3.12 are not Schauder
bases. As the TGAdoes not depend on the particular waywe reorder the basis, whereas
being a Schauder basis does, studying the TGA within the framework of Schauder
bases is somehow unnatural. Nonetheless, Schauder bases have provided a friendly
framework to develop the greedy approximation theory with respect to bases since its
beginning at the turn of the century. In fact, it is nowadays unknown even whether
certain results involving the TGAwork outside the framework of Schauder bases (see,
e.g., [11])! Hence, in connection with our discussion it is natural to wonder whether
bidemocratic Schauder bases are quasi-greedy. We close this section by providing a
negative answer to this question too.

Theorem 3.15 There is a Banach space with a bidemocratic Schauder basis which is
not quasi-greedy.

The proof of Theorem 3.15 relies on a construction that has its roots in [20], where
it was used to build a conditional quasi-greedy basis. Variants of the original idea of
Konyagin and Telmyakov have appeared in several papers with different motivations
(see [1, 12, 18, 23]). Prior to tackling the proof we introduce a quantitative version of
[1, Theorem 6.7].

Theorem 3.16 Let X be a bidemocratic basis of a quasi-Banach space X. Then

gm[X∗, X
∗] � gm[X, X], m ∈ N.

If, in addition, X is a Schauder basis and X is locally convex,

gm[X∗, X
∗] ≈ gm[X, X], m ∈ N.

Proof Given D ⊆ N finite, let S∗
D be the dual operator of SD = SD[X, X]. Let �b be

the bidemocracy constant of X. Let Y be the closed subspace of X
∗ spanned by X∗.

Let f ∗ ∈ Y, m ∈ N, and B be a greedy set of f ∗ with |B| = m. Given f ∈ X, we
pick a greedy set A = Am( f ) of f ∈ X. The proof of [1, Theorem 6.7] gives

|S∗
B( f ∗)( f ) − f ∗(SA( f ))| ≤ 2�b ‖ f ‖ ‖ f ∗‖.

Therefore,

|S∗
B( f ∗)( f )| ≤ (gm[X, X] + 2�b)‖ f ‖ ‖ f ∗‖.
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This yields the first estimate. To see the equivalence under the additional assumptions,
we use that X∗∗ is equivalent to X (see [6, Corollary 3.2.4]). ��
Proposition 3.17 Let 1 < p < ∞. There is a Banach space X with a monotone
Schauder basis X with the following properties:

(i) For all finite sets A ⊆ N and all ε ∈ EA,

‖1εA‖ = |A|1/p and ‖1∗
εA‖ = |A|1/p′

,

where 1/p + 1/p′ = 1. Therefore, X is 1-bidemocratic.
(ii) Neither X nor X∗ are quasi-greedy. Quantitatively,

gm ≈ g∗
m ≈ km ≈ k∗

m ≈ (logm)1/p′
, m ∈ N, m ≥ 2.

Proof Put

D := {(m, k) ∈ N
2 : 1 ≤ k ≤ m},

where the elements are taken in the lexicographical order. Appealing to Lemma 3.2
we recursively construct a family (rm,k, sm,k)(m,k)∈D in N

2 such that

m + 1 < rm,k < sm,k, 1 ≤ k ≤ m, (3.8)

sm,k < rm,k+1, 1 ≤ k < m, and (3.9)

1

k
− 1

m
≤ Tm,k :=

sm,k∑

j=rm,k

1

j
<

1

k
, 1 ≤ k ≤ m. (3.10)

Next, we choose a sequence (Am)∞m=1 of integer intervals contained in N so that
max(Am) < min(Am+1) for all m ∈ N, and

|Am | = 2m +
m

∑

k=1

sm,k − rm,k . (3.11)

Note that we do not impose to the sets (Am)m∈N the condition that they form a partition
of N, so they are not uniquely determined by the family (rm,k, sm,k)(m,k)∈D. Let

im,k = min Am +
k−1
∑

j=1

(

sm, j − rm, j + 2
)

, (m, k) ∈ D.

Fix m ∈ N. For each n ∈ Am there are unique integers 1 ≤ k ≤ m and −1 ≤ t ≤
sm,k − rm,k so that n = im,k + 1 + t . Let us set

(dm,n, εm,n) =
{

(k, 1) if t = −1,

(rm,k + t,−1) otherwise.
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Consider the subset of N given by

Bm = {n ∈ Am : εm,n = 1} = {im,k : 1 ≤ k ≤ m}.

By definition, (dm,n)n∈Bm is an enumeration of the first m positive integers. In turn,
the family (dm,n)n∈Am\Bm , whose first element is 1 + rm,1, is increasing. Therefore,
by (3.8),

max
n∈Bm

dm,n < min
n∈Am\Bm

dm,n, (3.12)

and (dm,n)n∈Am consists of distinct positive integers. Set bm,n = d−1/p′
m,n for m ∈ N

and n ∈ Am . We infer that for each m ∈ N and A ⊆ Am we have

∑

n∈A

bm,n ≤
|A|
∑

n=1

n−1/p′ ≤ p |A|1/p , and (3.13)

∑

n∈A

bp′
m,n ≤ H|A|, (3.14)

where, as before, Hm denotes the m-th harmonic number. Once the family
(bm,n)m∈N,n∈Am has been constructed, we define ‖ · ‖� on c00 by

∥
∥(an)∞n=1

∥
∥

� = 1

p
sup
m∈N
l∈Am

∣
∣
∣
∣
∣
∣
∣
∣

∑

n∈Am
n≤l

anbm,n

∣
∣
∣
∣
∣
∣
∣
∣

.

Sincemax(Am) < min(Am+1) for allm ∈ N, we have that ‖ f ‖� < ∞ for all f ∈ c00,
so that ‖ · ‖� is a semi-norm. Let X be the Banach space obtained as the completion
of c00 endowed with the norm

‖ f ‖ = max
{‖ f ‖p, ‖ f ‖�

}

.

It is routine to check that the unit vector systemX is a monotone normalized Schauder
basis of X whose coordinate functionals X∗ are the canonical projections on each
coordinate. It follows from (3.13) that

‖1ε,A‖� ≤ 1

p
sup
m∈N

∑

n∈A∩Am

bm,n ≤ |A|1/p , |A| < ∞, ε ∈ EA.

By definition, there is a norm-one linear map from X into �p which maps X to the
unit vector system of �p. By duality, there is a norm-one map from �p′ into X

∗ which
maps the unit vector system of �p′ to X∗. In particular,

‖1∗
ε,A‖ ≤ |A|1/p′

, |A| < ∞, ε ∈ EA.
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We infer that (i) holds.
Define am,n = εm,nd−1/p

m,n , so that am,nbm,n = εm,n/dm,n for m ∈ N and n ∈ Am .
For each m ∈ N set

fm =
∑

n∈Am

am,n xn .

Let (m, k) ∈ D and use the convention im,m+1 = 1 + max(Am). If im,k ≤ l < im,k+1
by construction we have

Bm,k(l) :=
l

∑

n=im,k

am,nbm,n = 1

k
−

l−1+rm,k−im,k∑

j=rm,k

1

j
.

Thus, the maximum and minimum values of Bm,k(l) on the interval im,k ≤ l < im,k+1
are 1/k and 1/k − Tm,k , respectively. Since by the right hand-side inequality in (3.10),
1/ j − Tm, j > 0 for all 1 ≤ j ≤ m we infer that

‖ fm‖� = 1

p
max
l∈Am

∑

n∈Am
n≤l

am,nbm,n = 1

p
max

1≤k≤m

1

k
+

k−1
∑

j=1

(
1

j
− Tm, j

)

.

Using the left hand-side inequality in (3.10) we obtain

‖ fm‖� ≤ 1

p
max

1≤k≤m

1

k
+ k − 1

m
= 1

p
.

We also have

‖ fm‖p
p =

m
∑

k=1

(
1

k
+ Tm,k

)

≤ 2Hm .

Hence, ‖ fm‖ ≤ 21/p H1/p
m for all m ∈ N.

By (3.12), Bm is a greedy set of fm . Since every coefficient of fm is positive on
Bm ,

‖SBm ( fm)‖ ≥ ‖SBm ( fm)‖� = 1

p

∑

j∈Bm

1

dm,n
= 1

p
Hm .

Summing up,

‖SBm ( fm)‖
‖ fm‖ ≥ 1

p 21/p
H1/p′

m , m ∈ N.

Since |Bm | = m, this shows that gm ≥ p−12−1/p H1/p′
m for all m ∈ N.
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By Theorem 3.16, it only remains to obtain the upper estimate for the uncondition-
ality constants of X. By (3.14) and Hölder’s inequality, for all A ⊆ N with |A| ≤ m
we have

‖SA( f )‖� ≤ 1

p
‖ f ‖p sup

m

⎛

⎝
∑

n∈A∩Am

|bm,n|p′
⎞

⎠

1/p′

≤ 1

p
H1/p′

m ‖ f ‖p.

Hence, km ≤ max{1, H1/p′
m /p} for all m ∈ N. ��

Remark 3.18 Given a basis X and an infinite subset n of N, we say that X is n-quasi-
greedy if

sup

{‖SA( f )‖
‖ f ‖ : f ∈ X, A greedy set of f , |A| ∈ n

}

< ∞

(see [23]). Note that the basis constructed in Proposition 3.17 is not n-quasi-greedy
for any increasing sequence n.

Remark 3.19 The basisX in Proposition 3.17 has a subbasis isometrically equivalent to
the unit vector basis of �p. Indeed, it is easy to check that

(

xim,1

)∞
m=1 has this property.

The basis X also has, as we next show, a block basis isometrically equivalent to the
unit vector basis of c0. Let (Am)∞m=1, (Bm)∞m=1 and ( fm)∞m=1 be as in that proposition,
and define

gm := SBm ( fm), hm = gm

‖gm‖�
, m ∈ N.

Pick positive scalars (εk)
∞
k=1 with

∑∞
k=1 ε

p
k = 1. Since

lim
m

‖gm‖p

‖gm‖�
= 0,

there is a subsequence
(

gmk

)∞
k=1 with

∥
∥gmk

∥
∥

p ≤ εk‖gmk ‖� for all k ∈ N. Let f =
(ak)

∞
k=1 ∈ c00. Since supp(hm) ⊆ Am for all m, we have

∥
∥
∥
∥
∥

∞
∑

k=1

akhmk

∥
∥
∥
∥
∥

�
= max

k∈N |ak |‖hmk ‖� = max
k∈N |ak |

and

∥
∥
∥
∥
∥

∞
∑

k=1

akhmk

∥
∥
∥
∥
∥

p

=
( ∞

∑

k=1

|ak |p‖hmk ‖p
p

)1/p

≤
( ∞

∑

k=1

|ak |pε
p
k

)1/p

≤ max
k∈N |ak |.

Consequently, ‖∑∞
k=1 akhmk ‖ = maxk∈N |ak |.
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4 Building Bidemocratic Conditional Quasi-greedy Bases

Probably, the most versatile method for building conditional quasi-greedy bases is the
previously mentioned DKK-method due to Dilworth, Kalton and Kutzarova, which
works only in the locally convex setting (i.e., for Banach spaces). It produces condi-
tional almost greedy bases whose fundamental function either is equivalent to (m)∞m=1
or has both the LRP and the URP. Thus, the DKK-method serves as a tool for con-
structing Banach spaces with bidemocratic conditional quasi-greedy bases whose
fundamental function has both the LRP and the URP. In this section we develop a
new method for building conditional bases that allows us to construct bidemocratic
conditional quasi-greedy bases with an arbitrary fundamental function.

We write X ⊕ Y for the Cartesian product of the quasi-Banach spaces X and Y

endowed with the quasi-norm

‖( f , g)‖ = max{‖ f ‖, ‖g‖}, f ∈ X, g ∈ Y.

Given sequences X = (xn)∞n=1 and Y = ( yn)
∞
n=1 in quasi-Banach spaces X and Y

respectively, its direct sum is the sequence X ⊕ Y = (un)∞n=1 in X ⊕ Y given by

u2n−1 = (xn, 0), u2n = (0, yn), n ∈ N.

If X and Y are bidemocratic bases, and ϕu[X, X] ≈ ϕu[Y, Y], then the basis X ⊕ Y
of X ⊕ Y is also bidemocratic with

ϕu[X ⊕ Y, X ⊕ Y] ≈ ϕu[X, X] ≈ ϕu[Y, Y],
gm[X ⊕ Y, X ⊕ Y] =max{gm[X, X], gm[Y, Y]},
km[X ⊕ Y, X ⊕ Y] =max{km[X, X], km[Y, Y]}.

Loosely speaking, we could say that X ⊕ Y inherits naturally the properties of X
and Y. In contrast, “rotating”X ⊕ Y gives rise to more interesting situations. In this
section we study the “rotated” sequence X � Y = (zn)∞n=1 in X ⊕ Y given by

z2n−1 = 1√
2
(xn, yn), z2n = 1√

2
(xn,− yn), n ∈ N.

Note that

∞
∑

n=1

an zn = 1√
2

( ∞
∑

n=1

(a2n−1 + a2n)xn,

∞
∑

n=1

(a2n−1 − a2n) yn

)

, (4.1)

whenever the series converges.
To deal with bases built using this method, we introduce some notation. Given

A ⊆ N we set

Ao = {2n − 1 : n ∈ A}, Ae = {2n : n ∈ A}.
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Consider also the onto map η : N → N given by η(n) = �n/2�. Note that η−1(A) =
Ao ∪ Ae and η(Ao) = η(Ae) = A for all A ⊆ N.

Our first auxiliary result is pretty clear and well-known. In its statement we implic-
itly use the natural identification of (X ⊕ Y)∗ with X

∗ ⊕ Y
∗.

Lemma 4.1 (cf. [3, Theorem 2.6]) Suppose that X and Y are bases of X and Y respec-
tively. Then X�Y is a basis of X⊕Y whose dual basis is X∗ �Y∗. Moreover, if X and
Y are Schauder bases, so is X � Y.

Lemma 4.2 Let X be a basis of a quasi-Banach space. There is a constant C such that

∥
∥
∥
∥
∥

∞
∑

n=1

an xn

∥
∥
∥
∥
∥

≤ Cϕu(m)

whenever |an| ≤ 1 for all n ∈ N and an �= 0 for at most m indices. Moreover, if X is
p-Banach space, 0 < p ≤ 1, we can choose C = (2p − 1)−1/p.

Proof It follows readily from [1, Corollary 2.3]. ��
Lemma 4.3 Suppose that X and Y are bases of X and Y respectively. Then

ϕu[X � Y, X ⊕ Y] ≤ C max{ϕu[X, X],ϕu[Y, Y]}

for some constant C that only depends on the spaces X and Y (and it is
√
2 if X and

Y are Banach spaces).

Proof Let m ∈ N, A ⊆ N with |A| ≤ m, and ε = (εn)n∈A ∈ EA. We extend ε by
setting εn = 0 if n ∈ N\A. Put

B = {n ∈ N : 2n − 1 ∈ A} ∪ {n ∈ N : 2n ∈ A},

that is, B = η(A). We have |B| ≤ |A| and |ε2n−1 ± ε2n| ≤ 2χB(n) for all n ∈ N.
Thus, if C is the constant in Lemma 4.2,

‖1ε,A[X � Y, X ⊕ Y]‖

= 1√
2
max

{∥
∥
∥
∥
∥

∞
∑

n=1

(ε2n−1 + ε2n)xn

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

∞
∑

n=1

(ε2n−1 − ε2n) yn

∥
∥
∥
∥
∥

}

≤ 2C√
2
max {ϕu[X, X](m),ϕu[Y, Y](m)} .

��
Proposition 4.4 Suppose thatX andY are bidemocratic bases of quasi-Banach spaces
X and Y respectively. Suppose also that

sm := ϕu[X, X](m) ≈ ϕu[Y, Y](m), m ∈ N.
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Then X � Y is a bidemocratic basis of X ⊕ Y. Moreover,

ϕu[X � Y, X ⊕ Y](m) ≈ sm, m ∈ N.

Proof Since, by assumption,

max{ϕu[X∗, X
∗](m),ϕu[Y∗, Y

∗](m)} � m

sm
, m ∈ N,

applying Lemma 4.3 yields

ϕu[X � Y, X ⊕ Y](m) � sm, m ∈ N,

and

ϕu[X∗ � Y∗, X
∗ ⊕ Y

∗](m) � m

sm
, m ∈ N.

Using Lemma 4.1, these inequalities readily give the desired result. ��
Proposition 4.5 Let X = (xn)

∞
n=1 and Y = ( yn)∞n=1 be non-equivalent bases of quasi-

Banach spaces X and Y respectively. Then, X � Y is a conditional basis of X ⊕ Y.
Quantitatively, if

cm = {(an)∞n=1 ∈ F
N : 1 ≤ |{n ∈ N : an �= 0}| ≤ m}

and

Em[X,Y] = sup
(an)∞n=1∈cm

‖∑∞
n=1 an xn‖

‖∑∞
n=1 an yn‖ , m ∈ N,

then

km[X � Y, X ⊕ Y] ≥ 1

2
max{Em[X,Y], Em[Y,X]}, m ∈ N.

Proof Our proof relies on considering expansions relative to the rotated basis X � Y
which define vectors whose first or second component is zero. Given m ∈ N and a
sequence (an)∞n=1 in cm we set A = {n ∈ N : an �= 0}, and put

fo =
∑

n∈A

an z2n−1 and fe =
∑

n∈A

an z2n .

By (4.1) we have

fo = 1√
2

( ∞
∑

n=1

an xn,

∞
∑

n=1

an yn

)

,
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fo + fe = √
2

( ∞
∑

n=1

an xn, 0

)

, and

fo − fe = √
2

(

0,
∞
∑

n=1

an yn

)

.

Therefore,

‖ fo‖
‖ fo + fe‖ ≥ 1

2

‖∑∞
n=1 an yn‖

‖∑∞
n=1 an xn‖ and

‖ fo‖
‖ fo − fe‖ ≥ 1

2

‖∑∞
n=1 anxn‖

‖∑∞
n=1 an yn‖ .

Since |A| ≤ m, these inequalities yield the desired lower estimate for km[X�Y, X⊕Y].
��

Proposition 4.5 gives that the conditionality constants of X �Y are bounded below
by

1

2
max

{
ϕu[X, X]
ϕu[Y, Y] ,

ϕu[Y, Y]
ϕu[X, X] ,

ϕl [X, X]
ϕl [Y, Y] ,

ϕl [Y, Y]
ϕl [X, X]

}

.

Thus, applying our method to bases with non-equivalent fundamental functions yields
“highly” conditional bases. In contrast, since bidemocratic bases are truncation quasi-
greedy (see [1, Proposition 5.7]), a combination of Proposition 4.4 with Theorem 3.5
exhibits that we can apply the “rotationmethod” to bidemocratic bases with equivalent
fundamental functions to obtain bases whose conditionality constants grow “slowly”.
However, the basis X � Y is always conditional unless X and Y are equivalent. In this
context, since quasi-greedy bases are truncation quasi-greedy (see [1, Theorem 4.13])
we ask ourselves whether our construction preserves quasi-greediness. Our next result
provides an affirmative answer to this question.

Theorem 4.6 Let X and Y be bidemocratic bases of quasi-Banach spaces X and Y

respectively. Suppose that

ϕu[X, X](m) ≈ ϕu[Y, Y](m), m ∈ N.

Then,

gm[X � Y, X ⊕ Y] ≈ max{gm[X, X], gm[Y, Y]}, m ∈ N.

In particular, X � Y is quasi-greedy if and only if X and Y are quasi-greedy.

Before the proof of Theorem 4.6 we give two auxiliary lemmas.

Lemma 4.7 Let X = (xn)∞n=1 and Y = ( yn)∞n=1 be bases of quasi-Banach spaces X

and Y respectively. Suppose that Y is truncation quasi-greedy and that

ϕu[X, X](m) � ϕl [Y, Y](m), m ∈ N.
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Then, there is a constant C0 such that

∥
∥
∥
∥
∥

∑

n∈E

cn xn

∥
∥
∥
∥
∥

≤ C0

∥
∥
∥
∥
∥

∞
∑

n=1

dn yn

∥
∥
∥
∥
∥

whenever E ⊆ N is finite and maxn∈E |cn| ≤ minn∈E |dn|.
Proof It is immediate from Lemma 4.2 and Lemma 2.3 combined. ��
Lemma 4.8 Let X be a basis of a quasi-Banach space X. If X is truncation quasi-
greedy and democratic, then there is a constant C such that

gm[X, X] ≤ C gk[X, X], k ≤ m ≤ 2k.

In particular, the sequences (gm[X, X])∞m=1 and (gm[X, X])∞m=1 are doubling.

Proof Let A be a greedy set of f ∈ X with |A| = m. Pick a greedy set B of f
with B ⊆ A and |B| = k. Since |A\B| ≤ |B|, applying Lemma 4.7 with X and a
permutation ofX yields ‖SA\B( f )‖ ≤ C0‖ f − SB‖, where C0 only depends onX and
X. Hence, if κ denotes the modulus of concavity of X, ‖SA( f )‖ ≤ κ(C0 + gk)‖ f ‖. ��
Proof of Theorem 4.6 Let (x∗

n)∞n=1, ( y∗
n)∞n=1, and (z∗n)∞n=1 be the dual bases of X =

(xn)∞n=1, Y = ( yn)
∞
n=1, and X � Y = (zn)

∞
n=1, respectively. For A ⊆ N, set SA =

SA[X � Y, X ⊕ Y], SX

A = SA[X, X], and SY

A = SA[Y, Y]. By Lemma 4.1 and (4.1),

SAe∪Ao(g, 0) =
∑

n∈A

z∗2n−1(g, 0) z2n−1 +
∑

n∈A

z∗2n(g, 0) z2n

=
∑

n∈A

x∗
n(g)

z2n−1 + z2n√
2

=
∑

n∈A

x∗
n(g) (xn, 0) = (SX

A (g), 0)

for all g ∈ X and all A ⊆ N finite. Similarly, for all h ∈ Y we have

SAe∪Ao(0, h) =
∑

n∈A

z∗2n−1(0, h) z2n−1 −
∑

n∈A

z∗2n(0, h) z2n

=
∑

n∈A

y∗
n(h)

z2n−1 − z2n√
2

=
∑

n∈A

y∗
n(h) (0, yn) = (0, SY

A (h)).

Therefore, since |Ae ∪ Ao| = 2|A|,

hm := max{gm[X, X], gm[Y, Y]} ≤ g2m[X � Y, X ⊕ Y], m ∈ N.
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Using Lemma 4.8, we obtain the desired upper estimate for hm .
Given a greedy set B of f = (g, h) ∈ X⊕Y, let A1, A2 and A12 be disjoint subsets

of N such that

B = (A12 ∪ A1)
o ∪ (A12 ∪ A2)

e.

We have |B| = 2|A12| + |A1| + |A2|. Set A0 = N\(A12 ∪ A1 ∪ A2). Let (cn)∞n=1 be
the coefficients of f relative toX�Y, let (an)∞n=1 be the coefficients of g relative toX,
and let (bn)∞n=1 be the coefficients of h with respect to Y. Notice that, by Lemma 4.1,

c2n−1 = 1√
2
(an + bn), c2n = 1√

2
(an − bn). (4.2)

Set c = min{|cn| : n ∈ B}. The mere definition of the sets gives

(C.1) |c2n−1| ≤ c ≤ |c2n| for all n ∈ Ao
2,

(C.2) |c2n| ≤ c ≤ |c2n−1| for all n ∈ Ae
1,

(C.3) max{|c2n−1|, |c2n|} ≤ c for all n ∈ A0, and
(C.4) max{|c2n−1|, |c2n|} ≥ c for all n ∈ N\A0.

Combining (4.2) with (C.3) gives |an|, |bn| ≤ √
2c for all n ∈ A0, i.e., A3 ∪ A4 ⊆

N\A0, where

A3 = {n ∈ N : |an| >
√
2c}, A4 = {n ∈ N : |bn| >

√
2c}.

Note that A3 is a greedy set of g, A4 is a greedy set of h, and

max{|A3|, |A4|} ≤ |N\A0| = |A12 ∪ A1 ∪ A2| ≤ |A12| + |A1| + |A2| ≤ |B|.
Set A5 = N\(A3 ∪ A0) and A6 = N\(A4 ∪ A0). Taking into account that, for any
D ⊆ N, the coordinate projection on η−1(D) with respect to X � Y coincides with
that with respect to the direct sum X ⊕ Y of bases X and Y we obtain

(SX

A3
(g), SY

A4
(h)) − SB( f ) = SAe

1
( f ) + SAo

2
( f ) − (SX

A5
(g), SY

A6
(h)).

Therefore, it suffices to prove that

max{‖SX

A5
(g)‖, ‖SY

A6
(h)‖, ‖SAe

1
( f )‖, ‖SAo

2
( f )‖} ≤ C1‖ f ‖

for some constant C1. Thus, the result would follow by applying the next two claims
to the pairs of bases (X,Y), (Y,X), (X,Y−) and (Y−,X) where Y− = (− yn)∞n=1. ��
Claim 1 There is a constant C such that

∥
∥
∥
∥
∥

∑

n∈A

an xn

∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∞
∑

n=1

an (xn, yn) +
∞
∑

n=1

bn (xn,− yn)

∥
∥
∥
∥
∥

whenever A ⊆ N is finite and maxn∈A |an| ≤ b := minn∈A |bn|.
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Claim 2 There is a constant C such that
∥
∥
∥
∥
∥

∑

n∈A

an xn

∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

( ∞
∑

n=1

an xn,

∞
∑

n=1

bn yn

)∥
∥
∥
∥
∥

whenever maxn∈A |an| ≤ b := minn∈A max{|an + bn|, |an − bn|}.
Indeed, taking into account (C.1) and (C.2), applying Claim 1 would give

∥
∥
∥
∥
∥
∥

∑

n∈Ao
2

c2n−1xn

∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∞
∑

n=1

c2n−1 (xn, yn) +
∞
∑

n=1

c2n (xn,− yn)

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥

∑

n∈Ao
2

c2n−1 yn

∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∞
∑

n=1

c2n−1 ( yn, xn) +
∞
∑

n=1

−c2n ( yn,−xn)

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥

∑

n∈Ae
1

c2nxn

∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∞
∑

n=1

c2n (xn,− yn) +
∞
∑

n=1

c2n−1 (xn, yn)

∥
∥
∥
∥
∥

, and

∥
∥
∥
∥
∥
∥

∑

n∈Ae
1

c2n yn

∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∞
∑

n=1

c2n (− yn, xn) +
∞
∑

n=1

−c2n−1 (− yn,−xn)

∥
∥
∥
∥
∥

,

and these inequalities would yield ‖SAo
2
( f )‖ ≤ C‖ f ‖ and ‖SAe

1
( f )‖ ≤ C‖ f ‖. In

turn, combining (4.2) with (C.4) gives

|an| ≤ max{|an + bn|, |an − bn|}, n ∈ A5,

|bn| ≤ max{|an + bn|, |an − bn|} n ∈ A6.

Therefore, applying Claim 2 would give

‖SX

A5
( f ) =

∥
∥
∥
∥
∥
∥

∑

n∈A5

an xn

∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

( ∞
∑

n=1

an xn,

∞
∑

n=1

bn yn

)∥
∥
∥
∥
∥

= C‖ f ‖, and

‖SY

A6
( f ) =

∥
∥
∥
∥
∥
∥

∑

n∈A6

bn yn

∥
∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

( ∞
∑

n=1

bn yn,

∞
∑

n=1

an xn

)∥
∥
∥
∥
∥

= C‖ f ‖.

Let us now prove Claim 1. Set D1 = {n ∈ A : |an − bn| ≥ b}. If n ∈ D2 := A\D1
then

|an + bn| = |2bn + (an − bn)| ≥ 2|bn| − |an − bn| > 2b − b = b.
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Hence, if κ is the modulus of concavity of X, applying Lemma 4.7 we obtain

∥
∥
∥
∥
∥

∑

n∈A

an xn

∥
∥
∥
∥
∥

≤ κ

⎛

⎝

∥
∥
∥
∥
∥
∥

∑

n∈D1

an xn

∥
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥
∥

∑

n∈D2

an xn

∥
∥
∥
∥
∥
∥

⎞

⎠

≤ κC0

(∥
∥
∥
∥
∥

∞
∑

n=1

(an − bn) yn

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∞
∑

n=1

(an + bn)xn

∥
∥
∥
∥
∥

)

≤ 2κC0 max

{∥
∥
∥
∥
∥

∞
∑

n=1

(an + bn) xn

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

∞
∑

n=1

(an − bn) yn

∥
∥
∥
∥
∥

}

= 2κC0

∥
∥
∥
∥
∥

∞
∑

n=1

an (xn, yn) +
∞
∑

n=1

bn (xn,− yn)

∥
∥
∥
∥
∥

.

We conclude by proving Claim 2. Set D1 = {n ∈ A : |an| ≤ |bn|} and D2 = A\D1.
Since

max{|an|, |bn|} ≥ b

2
, n ∈ A,

we have |bn| ≥ b/2 for all n ∈ D1 and |an| ≥ b/2 for all n ∈ D2. Therefore

max
n∈D1

|an| ≤ 2 min
n∈D1

|bn|, max
n∈D2

|an| ≤ 2 min
n∈D2

|an|.

Applying Lemma 4.7 we obtain

∥
∥
∥
∥
∥

∑

n∈A

an xn

∥
∥
∥
∥
∥

≤ κ

⎛

⎝

∥
∥
∥
∥
∥
∥

∑

n∈D1

an xn

∥
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥
∥

∑

n∈D2

an xn

∥
∥
∥
∥
∥
∥

⎞

⎠

≤ κC0

(∥
∥
∥
∥
∥

∞
∑

n=1

2bn yn

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∞
∑

n=1

2an xn

∥
∥
∥
∥
∥

)

≤ 4κC0

∥
∥
∥
∥
∥

( ∞
∑

n=1

an xn,

∞
∑

n=1

bn yn

)∥
∥
∥
∥
∥

.

��
If ϕ is the fundamental function of a basis of a Banach space, then (ϕ(m))∞m=1 and

(m/ϕ(m))∞m=1 are non-decreasing sequences (see [16]). Our next result says that any
such ϕ corresponds in fact to a bidemocratic basis of a Banach space.

Theorem 4.9 Let (sm)∞m=1 be a non-decreasing unbounded sequence of positive
scalars. Suppose that (m/sm)∞m=1 is unbounded and non-decreasing. Then there is
a Banach space X and a conditional bidemocratic quasi-greedy basis X of X whose
fundamental function grows as (sm)∞m=1.
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Proof Let w = (wn)∞n=1 denote the weight whose primitive weight is (sm)∞m=1. Then
d1,1(w) is a Banach space whose dual space is the Marcinkiewicz space m(w), con-
sisting of all f ∈ c0 whose non-increasing rearrangement (an)∞n=1 satisfies

‖ f ‖m(w) = sup
m

1

sm

m
∑

n=1

an < ∞

(see [13, Theorems 2.4.14 and 2.5.10]). Let m0(w) be the closed linear span of c00
in m(w). Since the unit vector system is a boundedly complete basis of d1,1(w), an
application of [6, Theorem 3.2.15] yields that the dual space of m0(w) is d1,1(w).
In the language of bases, the dual basis of the unit vector system of d1,1(w) is the
unit vector system of m0(w), and the other way around, i.e., the dual basis of the unit
vector system of m0(w) is the unit vector system of d1,1(w). Moreover, the unit vector
system of m0(w) is shrinking by [6, Theorem 3.2.17].

Letw∗ be the weight whose primitive weight is (m/sm)∞m=1. We have the following
chain of norm-one inclusions:

d1,1(w) ⊆ m0(w
∗) ⊆ m(w∗) ⊆ d1,∞(w). (4.3)

The right hand-side inclusion is clear. Let us prove the left hand-side inclusion. Let
(an)∞n=1 be the non-increasing rearrangement of f ∈ c0. Given m ∈ N we define
(bn)∞n=1 by bn = an is n ≤ m and bn = 0 otherwise. Using Abel’s summation formula
we obtain

sm

m

m
∑

n=1

an = sm

m

∞
∑

n=1

(bn − bn+1)n

≤
∞
∑

n=1

(bn − bn+1)sn

=
m

∑

n=1

anwn ≤ ‖ f ‖1,w.

We infer from (4.3) that d1,1(w) and m0(w
∗) are Banach spaces for which the unit

vector system is a symmetric basis with fundamental function (sm)∞m=1. Applying
the rotation method with these bases yields a bidemocratic quasi-greedy basis of
d1,1(w) ⊕ m0(w

∗) with fundamental function equivalent to (sm)∞m=1.
To show that this basis is conditional, by Proposition 4.5 it suffices to show that

d1,1(w) and m0(w
∗) are not isomorphic, so that d1,1(w) � m0(w

∗). For that, we
note that �1 is a complemented subspace of d1,1(w). Indeed, the proof in [7] works
even without imposing to be non-increasing to w. An appeal to [6, Theorem 3.3.1]
concludes the proof. ��
Remark 4.10 Notice that in Theorem 4.9 we can obtain that X is 1-bidemocratic with
ϕu[X, X](m) = sm for all m ∈ N. Indeed, if (sm)∞m=1 is a non-decreasing sequence of
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positive scalars such that (m/sm)∞m=1 is non-decreasing, and X is a p-Banach space,
0 < p ≤ 1, with a bidemocratic basis X such that ϕu[X, X](m) ≈ sm for m ∈ N,
then, arguing as in the proof of [17, Theorem 2.1] (where unconditionality plays no
role), we obtain an equivalent p-norm for X with respect to which ϕu[X, X](m) = sm

and ϕu[X∗, X
∗](m) = m/sm for all m ∈ N.

Remark 4.11 In the case when (sm)∞m=1 has the URP we can give a more quan-
titative approach to the proof of Theorem 4.9. In this particular case we have
m(w∗) = d1,∞(w). Applying the rotation method with the unit vector systems of
d1,p(w) and d1,q(w), 0 < p < q ≤ ∞, yields a bidemocratic quasi-greedy basis
(of a locally r -convex quasi-Banach space, where r = min{1, p}) whose fundamental
function is equivalent to (sm)∞m=1. Combining (3.4) with Proposition 4.5 gives that the
conditionality constants (km)∞m=1 of the basis we obtain satisfy

km � (Hm[w])1/p−1/q , m ∈ N.

In the particular case that (sm)∞m=1 has the LRP, by Lemma 3.4,

km � (logm)1/p−1/q , m ∈ N, m ≥ 2.

Notice that, if 1 < p < q < ∞ and (sm)∞m=1 has the LRP and the URP, then X is
superreflexive [8, Theorem 3.16]. In particular, we find a bidemocratic quasi-greedy
basis of a Banach space with km � logm for m ≥ 2; and, for each 0 < s < 1, a
bidemocratic quasi-greedy basis of a superreflexive Banach space with km � (logm)s

form ≥ 2. Thus, the rotationmethod serves to built “highly conditional” almost greedy
bases (see [2] for background on this topic).

Example 4.12 Let X be a Banach space with a greedy, non-symmetric basis X whose
dual basis is also greedy. Then, if Xπ is a permutation of X nonequivalent to X,
we have that X � Xπ is a conditional quasi-greedy basis of X ⊕ X. For instance,
in light of [26, Theorem 2.1], this technique can be applied to the L p-normalized
Haar system to obtain a bidemocratic conditional quasi-greedy basis of L p([0, 1]),
p ∈ (1, 2) ∪ (2,∞). Also, since, for the same values of p, the space �p has a greedy
basis which is non-equivalent to the canonical basis (see [14, Theorem 2.1]), this
technique yields a bidemocratic conditional basis of �p.
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