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Abstract 
The development of an automatic geometry optimization tool for efficient aerodynamic shape design, 

supported by Computational Fluid Dynamic (CFD) methods is nowadays an active research field, as can 

be observed from the increasing number of scientific publications during the last years. In particular, the 

choice of a proper parameterization is critical for the performing of the optimizations. This paper focuses 

on the application of an optimization framework based on the combined use of the surrogate modelling 

techniques, evolutionary algorithms and volumetric Non Uniform Rational B-splines (NURBS). More 

specifically, this work aims to analyze how sensitive this approach is to the number of the control points. 

Some conclusions will be drawn on the influence of the number of design variables in order to provide 

optimal shapes in an efficient manner. To do this, two well-known aeronautical test cases have been 

analyzed: the two-dimensional RAE2822 airfoil and the three-dimensional DPW-W1 wing in transonic 

flow conditions.  

1. Introduction 

Industrial application of automatic aerodynamic shape optimization tools has still to face several challenges, as for 

instance, how to tackle integrated components, how to allow deformations in certain regions (as intersections between 

wing and fuselage or pylon/nacelle) or how to reduce the computational cost usually required for performing 

aerodynamic design optimization. In addition, the selection of the design parameters is a crucial step, which has to be 

chosen at the beginning of the process, and strongly determines the range of solutions and performance of the 

optimization algorithm. Therefore, the selection of an adequate parameterization will greatly affect both the efficiency 

of the optimization process and the optimal solutions. 

A high number of design variables, which in the approach proposed in this work are the NURBS control points, tend 

to create rough surfaces and undesired loose of smoothness. Also the surrogate prediction is highly influenced by the 

number of inputs. The study of the correlation among these issues is essential in order to accomplish successful 

optimizations suitable for its implementation in the aeronautical industry. 

The aim of this work is to provide a comprehensive study about how the selected parameterization and number of 

design variables affect the convergence, surrogate prediction accuracy and results of such surrogate-based global 

optimization methods (SBGO). This study aims to drive some conclusions and to propose certain rules for a suitable 

geometry parameterization and discretization settings, leading to better optimizations procedures. 

This work is under the scope of the GARTEUR Action Group (AD/AG52), with the objective of providing a 

comprehensive survey about different surrogate methods for surrogate-based aerodynamic shape optimization, started 

at the beginning of 2013. Within this Group, research activities are planned over a three-year period, with the objective 

of performing a fair comparison between different surrogate modeling methods applied to the aerodynamic 

optimization of baseline geometries, sharing the parameterization (volumetric NURBS) and mesh deformation 

algorithms. The work presented complements the research activities performed in the mentioned European group. 
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2. Previous work 

 
In the field of aircraft design, parameterization techniques have a significant impact on the stability, efficiency and 

performance of the optimization. There have been several attempts to compare different parameterization methods [1], 

[2] based on key characteristics, such us flexibility, complexity, practical implementability, uniform parameter 

sensitivity, orthogonality (defined as one shape is identified by a unique set of parameters), among other characteristics.  

Parameterization methods can be roughly classified as descriptive and differential. Descriptive methods provides a set 

of design variables that describes the geometry. For example, the parametric section (PARSEC) [3], proposed by 

Sobiecky, describes an airfoil with eleven geometric key parameters. More recently, the class/shape function 

transformation (CST) [4], proposed by Kulfan, describes aircraft components surfaces as a product of a class function 

and a shape function created from key geometric parameters, such as leading edge radius, trailing edge, and closure to 

a specified aft thickness. Non-Uniform Rational B-Splines (NURBS) [5] [6] is a generic representation widely 

employed by modern computer aided design programs (CAD). This approach does not provide an intuitive physical 

meaning, as the previous ones, but it allows to explore the design space for unconventional and off-the-book designs. 

On the other hand, differential methods employ a baseline geometry and then apply deformations based on a shape 

function. These methods are in general easier to implement into the computational grid. For example, a profile can be 

accurately represented by a NURBS curve with 12 to 18 control points, but finding such curve can be a process that 

requires great expertise, and for complex geometries could be impractical. One of the earliest design variables in this 

category are the Hicks-Henne bump functions. Another simple technique is Free Form Deformation (FFD) [7], which 

envelops the geometry inside a lattice box or hull and performs global deformations of the space inside. The method 

is analog to NURBS surface in a sense that deformations are controlled by the movement of control points. The most 

common form of FFD employs Bernstein polynomials, which allow to directly link the spatial coordinates to the 

parametric coordinates through linear transformation, provided some rules how the box is build are followed. More 

recently, the Control Box [8] approach employs volumetric NURBS as basis functions. This technique requires the 

additional effort to calculate the parametric coordinates from the spatial coordinates through an appropriated inversion 

point algorithm, but confers important advantages over FFD, such as deformation locality, arbitrary set up of the control 

points, selection of the smoothness, and order of the interpolation, while achieving the same deformation characteristics 

as conventional surface NURBS. 

 

3. Proposed approach 

3.1. Geometry parameterization of airfoil and wing 

Non-Rational Uniform B-Splines (NURBS) have demonstrated to be able to accurately represent a large family of 

geometries. In aerodynamic design, provides smooth surfaces while maintaining some deformation locality [9]. In 

addition, the optimized surface at the end of the optimization process has the correct format to feed directly the CAD 

and grid generation applications. However, the use of surface NURBS can be impractical, because very frequently 

requires the additional effort to develop a surface representation that fits the original geometry, with an appropriated 

arrange of control points for the optimization. An alternative approach is to envelop the geometry in a volumetric 

NURBS, which maintain the deformation properties of a conventional 2-dimensional surface, but with the advantage 

that control points can be set up arbitrarily.  

 

From a mathematical point of view, NURBS surfaces are defined as the tensor product of three NURBS curves, 

defining a volumetric region, where the deformation is governed by the movement of control points: 

𝑆(𝜉, 𝜂, 𝜇) =
∑ ∑ ∑ 𝑈𝑖,𝑛(𝜉) 𝑉𝑖,𝑛(𝜂) 𝑊(𝜇)𝐾

𝑘 𝐶𝑖𝑗𝑘
𝐽
𝑗

𝐼
𝑖

∑ ∑ ∑ 𝑈𝑖,𝑛(𝜉) 𝑉𝑖,𝑛(𝜂) 𝑊(𝜇)𝐾
𝑘

𝐽
𝑗

𝐼
𝑖

 (1) 

where 𝐶 are the control points , 𝜉, 𝜂, 𝑎𝑛𝑑 𝜇 are the parametric coordinates,  and 𝑈, 𝑉, 𝑎𝑛𝑑 𝑊 are the basis functions 

which are calculated using the following expression: 

 

𝑈𝑖,1(𝜉) = {
1 𝑖𝑓 𝑢𝑖 ≤ 𝜉 <  𝑢𝑖+1

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 
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𝑈𝑖,𝑘(𝜉) =
(𝜉 − 𝑢𝑖)𝑈𝑖,𝑘−1(𝜉)

𝑢𝑖+𝑘−1 − 𝑢𝑖

+
(𝑢𝑖+𝑘 − 𝜉)𝑈𝑖+1,𝑘−1(𝜉)

𝑢𝑖+𝑘 − 𝑢𝑖+1

 

 

The basis coefficients are calculated from the knot vectors 𝑈̅, 𝑉̅ and 𝑊̅, which are a sequence of real numbers. Basis 

functions are equal to zero everywhere except for an interval delimited by the order of the NURBS, defining the area 

of influence of each control point [10]. The most common implementation of the control box is to employ uniform 

basis, which can be obtained with a knot sequence as: 

}1,...,1,
1

,...,,...,
1

,0,...,0{
11 



pp
N

N

N

i

N  (3) 

First order is equivalent to a linear interpolation, while second and third orders provide derivative and curvature 

continuity. In this work, the geometries are parameterized with a volumetric b-spline, also called control box (for both 

RAE 2822 and DPW wing), with third order, and the design variables will be the vertical displacements (z axis) of the 

control points. Figure 1 and Figure 2 shows the selected parameterization.  

  
Figure 1. Geometry parameterization of the RAE 2822 airfoil by volumetric NURBS 

To clarify, there are additional control points at the trailing edge that are kept fixed, in order to maintain the angle of 

attack; so the are not considered design variables. The design variables on the three-dimensional wing are those control 

points on the surface.  

 

  
Figure 2. Geometry parameterization of the DPW wing by volumetric NURBS 
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3.2. Evolutionary Algorithm 

Evolutionary Algorithms (EAs) are bio-inspired methods that mimic the behavior of natural evolution to solve complex 

optimization problems. The main elements of an EA are the solution coding, the selection operator and the crossover 

and mutation operators. The EA implemented for this work has the following characteristics: 

1. Solution coding: The solutions are coded as a vector of real values from 0 to 1. Each element of the vector represents 

the value of a normalized parameter. 

2. Selection operator: In the proposed EA, the selection operator is applied by replacing a portion of the current 

generation by new individuals generated from parents [11]. It is considered the replacement of the individuals in the 

population with fitness value under the population’s mean fitness. First, the mean population fitness is calculated as: 

𝑔̅ =
1

𝜉
∑ 𝑔𝑘

𝜉

𝑘=1

 (4) 

 

where 𝑔𝑘 is the fitness of the 𝑘𝑡ℎ individual and 𝜉 represents the number of individuals in the population. Every 

individual in the population with a value of fitness under 𝑔̅ is discarded, and substituted by a new individual obtained 

with the crossover operator. 

3. Crossover operator:  generates a new individual from the values of two parents selected randomly from the survival 

individuals. A multipoint crossover which selects the value of one of the parents with probability 0.5 is applied. 

4. Mutation operator: The values of each new individual are mutated with probability 1/𝑁𝑝, where 𝑁𝑝 is the number 

of parameters to be optimized. This operator changes the initial individual by using this formula: 

𝑉𝑖 = 𝑉𝑖 · (1 + 𝑈 · 𝛼) (5) 

where 𝑉𝑖 represents each one of the parameters to optimize, 𝑈 is an uniform noise [0-1] and 𝛼 is a value which represent 

the mutation level. Three values of 𝛼 have been used, 1, 0.1 and 0.01, randomly selected for each new individual with 

probability 1 3⁄ . It can be observed that α=1 represents a strong change on the initial value. On the other hand, 𝛼 = 0.01 

implies a change of 1% of the initial value, allowing a local search over this parameter. 

3.3. Objective function approximation using Support Vector Machines 

Support Vector Machines for regression (SVMr) are a powerful tool used on the machine learning field, and as a 

modelling tool for a large amount of regression problems on engineering. The SVMr can be solved as a convex 

optimization problem using kernel theory to face nonlinear problems. The SVMr consider not only the prediction error 

but also the generalization of the model. 

The SVMr consist of training a model with the form 𝑦 = 𝑤𝑇  𝛷(𝑥) + 𝑏 given a set of parameters 𝐶 = {(𝑥𝑖 , 𝑦𝑖  ), 𝑖 =
1,2, … , 𝑙}, to minimize a general risk function of the form: 

𝑅[𝑓] =
1

2
‖𝑤‖2 +

1

2
𝐶 ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥))

𝑙

𝑖=1

 (6) 

where w controls the smoothness of the model, 𝛷(𝑥) is a function of projection of the input space to the feature space, 

b is a parameter of bias, 𝑥𝑖 is a feature vector of the input space with dimension 𝑁, 𝑦𝑖  is the output value to be estimated 

and 𝐿(𝑦𝑖 , 𝑓(𝑥)) is the loss function selected. In this paper, the L1-SVR (L1 support vector regression) is used, 

characterized by an ε-insensitive loss function 

𝐿(𝑦𝑖 , 𝑓(𝑥)) = |𝑦𝑖 − 𝑓(𝑥𝑖)|𝜀  (7) 

In order to train this model, it is necessary to solve the following optimization problem 

min (
1

2
‖𝑤‖2 +

1

2
𝐶 ∑ 𝜉𝑖 + 𝜉𝑖

∗

𝑙

𝑖=1

) (8) 
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subject to: 

𝑦𝑖 − 𝑤𝑇𝛷(𝑥) − 𝑏 ≤ 𝜀 + 𝜉𝑖 , 𝑖 = 1, … , 𝑙 
−𝑦𝑖 + 𝑤𝑇𝛷(𝑥) + 𝑏 ≤ 𝜀 + 𝜉𝑖

∗, 𝑖 = 1, … , 𝑙 
𝜉𝑖 , 𝜉𝑖

∗ ≥ 0, 𝑖 = 1, … , 𝑙 
(9) 

To do this, a dual form is usually applied, obtained from the minimization of the Lagrange function that joins the 

function to minimize and the restrictions. The dual form is: 

max (−
1

2
∑ (𝛼𝑖 + 𝛼𝑖

∗)(𝛼𝑗 + 𝛼𝑗
∗)𝐾(𝑥𝑖 + 𝑥𝑗) − 𝜀 ∑(𝛼𝑖 + 𝛼𝑖

∗) + ∑ 𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

𝑙

𝑖=1

𝑙

𝑖,𝑗=1

 (10) 

subject to: 

∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

= 0; 𝛼𝑖 , 𝛼𝑖
∗ ∈ [0, 𝐶] (11) 

In addition to the restrictions, also must be taken in account the Karush-Kuhn-Tucker conditions and obtain the bias 

value. In the dual formulation we must emphasize the apparition of the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗), which is equivalent 

to the scalar product 〈𝛷(𝑥𝑖  ), 𝛷(𝑥𝑗  )〉. In our case, the kernel function is a Gaussian function: 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾 · ‖𝑥𝑖 − 𝑥𝑗‖
2

) (12) 

The final form of the regression model depends on the Lagrange multipliers 𝛼𝑖 , 𝛼𝑖
∗, following the expression: 

𝑓(𝑥) ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑙

𝑖=1

 
(13) 

In this way, the SVMr model depends on three parameters,𝜀, 𝐶 and 𝛾. The 𝜀 parameter controls the error margin 

permitted for the model, as can be seen in equations (8), (9), the C parameter controls the number of outliers allowed 

on the optimization of the function equation (8). Finally the 𝛾 parameter determines the Gaussian variance for the 

kernel. Depending on the selection of these values, the model can have a different performance. To obtain the best 

SVM performance, a search of the most suitable combination of these three parameters must be carried on, usually by 

using cross validation techniques over the training set. To reduce the computational time of this process, different 

methods have been proposed in the literature to reduce the search space related to these parameters. In this case, it has 

been applied the one developed by Ortiz-García et al [12] which has proven to require pretty short search times. 

 

3.4. Flowchart of the proposed approach 

In this work, a surrogate-based global optimization method with adaptive sampling is applied, called “The intelligent 

Estimation Search with Sequential Learning (IES-SL)”. This method allows performing an efficient adaptive sampling 

guiding the optimization algorithm towards the most promising regions of the design space. The flowchart of the 

proposed approach is displayed in Figure 3.  

The key feature of this approach is to use the surrogate model to estimate the location of the optimum in the real 

function. To do this, an evolutionary optimization search is applied over the surrogate, obtaining an estimated value of 

the real minimum position (an “intelligent guess”) [13]. Each of the estimations of the optimum location gives us a 

new sampling point (it means a new geometry that is also analyzed using the high fidelity CFD solver). Within a try-

and-error cycle, the surrogate proposes a new design which is again evaluated by the CFD solver and then, in a 

sequential learning, the surrogate model is enriched with the associated cost function. 

When the maximum number of iterations is reached, the optimum design is obtained as the best parameters on the 

database. In this way, we ensure that the design obtained is optimum with respect to the simulator system (CFD solver) 

and not only to the surrogate model. 
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Figure 3. Flowchart of the SBO process 

 

4. Numerical results 

4.1. Test cases definitions 

The fluid flow over the geometries of interest is simulated with the TAU Code [14] from the German Aerospace Center 

(DLR). The unsteady TAU Code solves the compressible, three-dimensional Reynolds-Averaged Navier-Stokes 

equations using a finite volume formulation. The TAU-Code is based on a hybrid unstructured-grid approach, which 

makes use of the advantages of semi-structured prismatic grids in the viscous shear layers near walls, while providing 

the flexibility offered by creating tetrahedral elements in the surrounding flow volume. A dual-grid approach with an 

edge based data structure is used in order to make the flow solver independent from the cell types used in the initial 

grid. 

 
The proposed IES-SL approach is applied to the aerodynamic shape optimization of a RAE2822 airfoil and a DPW-

W1 wing, with the problem formulation defined on Table 1. 

 

Table 1. Test cases definition 

 
#Design 

variables 

Flow 

conditions 

DP1 

Flow 

conditions 

DP2 

Objective 

function(OF) 

Aerodynamics 

constraints and 

penalties 

Geometric 

constraints 

RAE 2822 

airfoil 

6,8,10, 

12,14,16,

18 

M=0.734 

Re=6.5 x 106 

AoA=2.8o 

SA 

M=0.754 

Re=6.2 x 106 

AoA=2.12o 

SST 

𝑀𝑖𝑛 (𝐶𝐷/𝐶𝐿) 

Prescribed minimum 

lift coefficient 

 𝐶𝑙
0|𝑘: 𝐶𝑙|𝑘 ≥ 𝐶𝑙

0|𝑘 

Prescribed minimum 

pitching coefficient 

  𝐶𝑚
0 |𝑘: 𝐶𝑚|𝑘 ≥ 𝐶𝑚

0 |𝑘 

Drag penalty: if 

constraint on 

minimum pitching 

moment is not 

satisfied, the penalty 

will be 1 drag count 

per 0.01 in  ∆𝐶𝑚 

Limit: 

+/- 20% of 

the initial 

control points 

values 

DPW-W1 

wing 

12,18,24, 

30, 36 

M=0.8 

AoA=00 

Euler 

- 

A total budget of 100 CFD computations for RAE 2822 airfoil and 300 CFD computations for DPW-W1 wing was 

defined. 
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4.2. Metamodel obtention (SVMr) 

The surrogate model based on SVMr is built following the approach displayed in Figure 3. The validation strategy is 

explained in [15]. The obtained mean square errors (MSE) when predicting the objective function are displayed in 

Table 2. The proposed sampling method is compared to a Latin Hypercube Sampling (LHS) method. It can be seen 

that there are not significant differences in accuracy. 

 

Table 2. Validation of the surrogate model based on SVMr. 

Sampling method Problem Objective CL constraint CM constraint MSE 

EA-SVM RAE 2822 min (CD/ CL) No No 0.0766 

EA-SVM RAE 2822 min (CD/ CL) No Yes 0.0599 

EA-SVM RAE 2822 min (CD/ CL) Yes Yes 0.2089 

EA-SVM DPW-W1 min (CD/ CL) Yes Yes 0.0072 

LHS DPW-W1 min (CD/ CL) Yes Yes 0.0078 

EA-SVM DPW-W1 min (CD/ CL) Yes No 0.0075 

LHS DPW-W1 min (CD/ CL) Yes No 0.0075 

4.3. Optimization of a RAE2822 airfoil 

 

In this section, the approach is applied to the optimization of a RAE2822 airfoil, as defined in 4.1. Table 3 and Figure 

4  show the objective function (OF) and the aerodynamic efficiency (AE) of the original and optimized geometries. 

 

Table 3. RAE 2822 optimization results 

 𝑪𝑫 𝑪𝑳 𝑪𝑴 
OF 

𝑨𝑬 
 𝑫𝑷𝟏 𝑫𝑷𝟐 𝑫𝑷𝟏 𝑫𝑷𝟐 𝑫𝑷𝟏 𝑫𝑷𝟐 𝑫𝑷𝟏 𝑫𝑷𝟐 

original 0.0188 0.0204 0.8008 0.6606 -0.0953 -0.1022 1 42.51 32.36 

6 dv 0.0143 0.0149 0.8078 0.7589 -0.0902 -0.0967 0.7481 56.64 44.11 

8 dv 0.0134 0.0120 0.8464 0.7067 -0.0941 -0.0992 0.6113 63.18 58.88 

10 dv 0.0135 0.0119 0.8451 0.7245 -0.0885 -0.0959 0.6048 63.04 60.47 

12 dv 0.0132 0.0117 0.8306 0.7065 -0.0863 -0.0942 0.6077 62.75 60.15 

14 dv 0.0127 0.0118 0.8223 0.6940 -0.0941 -0.1008 0.6051 64.39 58.84 

16 dv 0.0131 0.0126 0.8394 0.6820 -0.0953 -0.0989 0.6323 63.81 54.10 

18 dv 0.0138 0.0129 0.8517 0.6898 -0.1018 -0.1038 0.66511 61.49 53.32 

 

 

  

Figure 4. Evolution of OF and AE with #DV for RAE 2822 optimization 

For this test case, a multipoint optimization has been executed for each parameterization. Results show an optimum 

within 10DV, reaching an improvement by ~40%, while fulfilling the constraints imposed to CL and CM. 

 

Figure 5 shows the shapes and pressure coefficient distributions of the original and optimized geometries.  
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Figure 5. RAE 2822 optimization results 

 

4.4. Optimization of a DPW-W1 wing  

In this section the approach is applied to the optimization phase of a DPW-W1 wing, as defined in section 4.1. Table 

4 and Figure 6 show the objective function (OF) and the aerodynamic efficiency (AE) function and optimized 

geometries.   
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Table 4. DPW-W1 wing optimization results 

 𝑪𝑫 𝑪𝑳 𝑪𝑴𝒚 OF AE 

original 0.0307 0.5984 -0.0286 1 19.48 

12 dv 0.0229 0.5987 -0.0266 0.7373 26.14 

18 dv 0.0217 0.5990 -0.0260 0.7069 27.58 

24 dv 0.0213 0.5981 -0.0261 0.6964 28.06 

30 dv 0.0214 0.5986 -0.0260 0.6962 27.99 

36 dv 0.0228 0.5971 -0.0250 0.7361 26.81 

 

  

Figure 6. Evolution of OF and AE with #DV for DPW-W1 optimization 

For this test case, only the upper face CPs have been considered. A single-point optimization has been executed for 

each parameterization. Results show that the optimum is reached when using 30 DV (10 DV at the upper face of 

each section) achieving an improvement by ~30% on OF, while the constrains on CL and CM have been fulfilled. 

 

Figure 7 shows the shapes and pressure coefficient distributions of the original and optimized geometries 
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Figure 7. DPW-W1 wing optimization results 

4.5. Execution time  

The following formula approximates the computational time required by the proposed approach as a combination of 

the simulation time, the training time and the optimization time. 

 
𝑡𝑖𝑚𝑒 = 5(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) + (𝑚𝑎𝑥 𝐶𝐹𝐷 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 − 5) × 

(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 + 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) 
(14) 

 

 
Table 5. Execution time considerations on a Linux x86_64 computational cluster 

 
RAE2822 

(RANS, 27k points) 

DPW-W1 

(Euler, 427k points) 

Training time ~ 10 s. ~ 10 s. 

Optimization time ~ 60 s. ~ 60 s. 

Simulation time 30 s.+150 s. (8 processors) 300 s. (8 processors) 

TOTAL APPROX 6.8 hours 30.7 hours 
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5. Conclusions  
 

The aim of this work was to provide a comprehensive study about how the selected parameterization and number of 

design variables affect the convergence and results of surrogate-based global optimization methods (SBGO). The 

following conclusions have been extracted from the results: 

 

- As expected, the selection of the design parameters and is a crucial step, and strongly determines the range of 

solutions and performance of the optimization algorithm. 

- The optimal number of design parameters for defining a 2D airfoil geometry (i.e RAE2822) is between 10-

12 DVs In addition, between 8DVs and 14DVs there is not a huge change in optimization performance. 

 

For the 3D wing (DPW test case), the optimum is reached when using 30DVs (10 parameters in the upper-side of each 

section).Again, between 18DVs and 30DVs there is not a huge change in optimization performance.  

Future work will extend this analysis by analyzing how sensitive this approach is to the location of the control points. 

Furthermore, the DPW in viscous flow conditions will be covered in order to validate these results. In addition, the 

proposed methodology will be also applied to the optimization of a 2D circle, in order to test the capability of this 

method to reach innovative shapes, and how different parameterizations will behave, when considering different 

objective functions. 
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