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Abstract. A simple method to automatically adapt the computational grid to surface bound-
ary deformations is presented. Mesh adaptation techniques can be used to reduce the number
of re-meshing steps in aerodynamic shape optimization problems or during the solution of a
coupled fluid-structure interaction problem. The method is inspired on the solution of the
Laplace  equation  and  the  resulting  algorithm  resembles  a  fully  explicit  Jacobi  iterative
scheme, avoiding the need to invert a large matrix, in order to solve the resulting system of
equations. The proposed method can withstand large deformations and also includes orthog-
onality correction to maintain the quality of the grid, especially in the boundary layer region.
The proposed technique is presented in two-dimensional unstructured hybrid grids, but can
be easily extended to three-dimensions.
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1 INTRODUCTION

Using Computational Fluid Dynamics (CFD) simulations, the mesh must be updated to
conform the boundary surface modifications. The mesh update can be achieved by re-mesh-
ing, but the generation of the mesh, for industrial complex configurations, is a time-consum-
ing operation and automatic grid generation is not always feasible.  This issue particularly
arises in the search of an optimal shape using CFD simulations, aero-elastic analysis, or con-
trol surface deflection problems. In addition, the use of different overlapped grids or chimera
for the simulation of moving parts is a well established and versatile technique. However, the
interpolation between zones is not intrinsically conservative and for some specific problems,
such as fluid-structural interaction, the use of mesh deformation would be preferable instead,
in order to reduce the numerical noise. To avoid the regeneration of the grid, mesh deforma-
tion or mesh update techniques can be considered as a fast and cheap alternative.

In the literature, there are several proposals for mesh deformation. The transfinite interpo-
lation [1,2] is an algebraic method, generally used in structured grids, that interpolates the dis-
placement of mesh points along arc mesh lines. This method is simple but not appropriate for
unstructured grids. The advancing front method is another algebraic technique for unstruc-
tured grids [3]. In this method, grid points are sorted with increasing distance to the deforma-
tion surface. Then, new displacements for each point are scaled average from the displace-
ments of the neighbor points, which have a smaller distance and which are thus already up-
dated. This strategy leads to advancing the front of displacements as iso-surfaces of equal dis-
tances, which was found to be of advantage in order to transport the information orthogonal to
the surfaces into the interior of the grid. The advancing front algorithm is simple and compu-
tationally very efficient. However, the robustness is uncertain for large deformations and it is
unclear how to face multiple components, such as wing-flap configurations.

In the tension spring analogy [4],  the edges  of the computational  grid are  modeled  as
springs, whose stiffness are inversely proportional to the length of the edge, making short
edges stiffer. This method is mathematically simple and can be solved with an iterative Jacobi
solver.  However,  the spring-edge idealization  will  eventually fail,  in some cases even for
small displacements. This method prevents the colliding of the vertices, but there is no mech-
anism to prevent a vertex to cross and edge and the consequently collapsing element.

 In order to mitigate overstretching and negative volume elements, the edge-spring is usu-
ally combined with a torsional spring analogy [5]. In two-dimensional grids, each vertex is at-
tached to a torsional spring that prevents the faces from squashing. Unfortunately, the exten-
sion to three-dimensional grids is not straightforward, as it may lead to negative volume tetra-
hedrons, even if all tetrahedron faces are valid elements. There are some attempts to extend it
to three-dimensions using more complex formulations and kinematic systems [6]. However,
the  spring-torsion  analogy works  under  the  assumption  of  relatively  small  displacements.
When elements are nearly flat, the Partial Differential Equations (PDE) that governs the sys-
tem is ill-conditioned, imposing a limited time step and convergence problems. Despite of its
limitations, the spring analogy still remains popular thanks to its easy implementation. 

The linear elasticity analogy [7] assumes that the computational mesh obeys the isotropic
linear elasticity equations, much like a rubber. The modulus of elasticity is often taken to be
inversely proportional to the cell volume or the cell aspect ratio. In this manner high aspect ra-
tio cells, as those close to the boundary layer, are less susceptible to compression. The spring
and linear elasticity approaches are compared in [8], where only the linear elasticity method is
stable enough for large scale deformations of 3D hybrid Navier-Stokes grids. The linear elas-
ticity approach allows significantly larger geometric deformations and can be naturally ex-
tended to three-dimensional grids. However, it requires the solution of a large system of equa-
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tions, one for each vertex, and the computational effort is not diminished in comparison with
the CFD simulations.  

The concept of Radial Basis Functions (RBF) has been also applied to update the mesh [9-
11]. In the RBF method, the mesh points are calculated through a global function that depends
on the distance of the base points, which are usually the deformed surface. The RBF method
does not require connectivity information, making it suitable for unstructured grids. However,
without information of the elements shape, there is little control of the grid quality. Some au-
thors propose the incorporation of a second set of base points to limit the change in orthogo-
nality near the wall [12].

Partial Differential Equations (PDE) are often used for generating grids. The use of the
Laplace equations is a popular approach to optimize smoothness and control the variation of
cell volumes. Techniques based on PDEs can also be applied for updating the grid to a mov-
ing boundary [13], which can be naturally extended to three-dimensions [14]. This approach
tackles the mesh motion as a boundary value problem by finding the mesh displacement field
that emanates from the solution of an Euler-Lagrange equation. This works when the mesh is
composed of approximately equal-sized elements and the motion of the interface boundary is
in the order of the size of the elements; otherwise, results in an algorithm breakdown. In order
to prevent an ill-conditioned system, a constraint condition is applied element wise; so larger
elements absorb most of the distortion. Similar to the linear elasticity analogy, methods based
on PDE can withstand a large amount of deformation, but require the solution of a very large
equation system; often tackled with a gradient conjugate method, or one of its variants.

The tension spring and linear elasticity are closely related to the Laplace equation. In this
work, a mesh deformation algorithm based on the Laplace operator is presented. The method
is similar to the linear elasticity in terms of robustness and deformation withstanding, while it
is as easy to implement as the spring analogy. The method can update very large deformations
without losing grid quality and the resulting equation system can be easily solved with an ex-
plicit Jacobi algorithm.

2 PROPOSED APPROACH

2.1 Mesh deformation 

The heat  equation  describes  how thermal  energy is  distributed  through a body until  a
steady state, governed by the Laplace equation

02  u

Let's consider the kinematic system represented in Figure 1, which illustrates a an interior
vertex a connected to its neighbors xi through the edges of an unstructured grid. 
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Figure 1: Kinematic system, where the vertex a is updated due to a perturbation of one of its neighbor.

Equivalently to the heat analogy, a mesh deformation rule is to minimize the variation of
the relative vertex displacements Min{∂(xi-xa)}, compared with the original ones. By imposing
Dirichlet  boundary conditions and using relative displacements  as a field,  this  can be ex-
pressed as a problem to calculate the solution of the Laplace equation, which in the discrete
form can be approximated as a linear system of equations: 
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where the term wi is the norm usually associated to the grid domain, such as the cell dimen-
sions. The superscript x0 indicates the original positions, while the superscript x' denotes the
updated vertex positions. The above expression can be rewritten and be solved wth an explicit
Jacobi algorithm: 
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where n is the iteration index. The norm selected in the test cases is the inverse squared length
of the edge connecting two vertices:

200 
 aii xxw (3)

In this way, smaller elements, such as those close to the boundary layer, will remain stiffer,
while deformations are absorbed by larger elements, which can sustain more strain. Alterna-
tively, selecting the inverse of the dual area associated to the vertex or a weight calculated
from the area of the associated elements, will achieve similar results. However, the edge dis-
tance turns out better for avoiding invalid elements in regions with high mesh stretching. In
this formulation, displacements in each coordinate direction become decoupled and are solved
independently. The norm are calculated from the original grid, before the deformation, which
is taken as a reference. So, a good grid quality is expected from the original grid. The above
expression corrects the relative position of the vertex, but it is insufficient to correct the skew-
ness of the elements, or the orthogonality, which is the subject of the next section.

2.2 Mesh orthogonality correction

The concept of mesh orthogonality relates how a grid element faces an optimal angle. In
convection-diffusion simulations a "false diffusion" is an error when the flow is not aligned
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with the grid lines, which is accumulated downstream. Orthogonality is a relevant mesh qual-
ity metric, in especial at the boundary layer, and might compromise the robustness and accu-
racy of the simulations. 

The mesh deformation algorithm presented in Eq. (2) can sustain large deformations, but
there is no information about the shape of the elements. It deals very well with translation
transformations, e.g. if the airfoil is moved to the left. On the other hand, rotations present a
more challenging problem and the orthogonality is required to be corrected, to maintain the
cell lines perpendicular to the wall. This can be achieved by preserving the angle of the ele-
ments, as it is illustrated in Figure 2.  

Figure 2: Kinematic system, where the vertex a is updated to maintain the angle θ of the element.

In a similar way to section 2.1, the aim is to minimize the variation of the angles after de-
formation:  Min{∂θ} (this can be trivially rewritten as θ'=θ0). The reference angles  typically
are 90º for quadrilaterals and 60º for triangles. In our test cases, the angles taken as reference
are those of the original grid, before deformation. In two dimensions, this can be expressed as
a coupled linear system of equations.
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where the weight wi is the same as Eq. (4), the terms x and y are the Cartesians coordinates,
while the angles β and  θ are illustrated in Figure 2. The superscript β n indicates the updated
value at iteration level and β 0 the reference value, which in our test cases are the angles of the
original mesh elements. The above formulation is ill-defined (there are oscillations between
two local equilibrium states), and therefore requires a relaxation coefficient  α to ensure the
convergence; a value of  α=0.5 ensures the convergence. The algorithm corrects the orthogo-
nality, but cannot prevent elements from squashing. The final algorithm comes as the combi-
nation of both approaches. 
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where the term Xp are the updated coordinates from Eq. (3) that maintains the vertex relative
positions, and Xg are the updated coordinates from Eq. (5) that corrects the orthogonality of
the mesh. The value of γ highly depends on the severity of the deformation. The orthogonality
correction has slow convergence, while the algorithm based on the relative positions is very
robust. In the test cases presented in this work, the strategy employed is to start with γ=0, to
give more strength to the relative position correction, then gradually increase the orthogonal-
ity correction, as the residuals drops to a final value of γ=1.

3 TEST CASE

The test case considered is a two dimensional hybrid grid for a RAE2822 airfoil, as shown
in Figure 3, where the geometry is rotated 20º. The proposed grid deformation method is com-
pared with the advancing front algorithm [3].

Figure 3: Original RAE2822 hybrid grid and the rotation tested for the mesh deformation. 

Figure 4 and Figure 5 compare the mesh updates performed with the two different meth-
ods. Even when none of the methods turn out with invalid elements, there are disparities on
the  grid quality.  The first one is the advancing front algorithm, which presents squashing
cells for this test case. The Laplacian deformation, in comparison, is able to maintain the in-
tegrity of the elements, but the grid lines are not perpendicular to the wall, which might com-
promise the accuracy of the simulations. Both methods are then post-processed with the or-
thogonality correction presented in section 2.2,  delivering good quality grids. Both post-pro-
cessed grids lead to almost  identical deformations,  because the orthogonality correction is
based on the Laplace operator, and therefore, the solution is theoretically unique. Disparities
can only be explained at numerical level. 

The advancing front algorithm is very fast and computationally efficient; in contrast, the
Laplace deformation requires a long number of iterations. The orthogonality correction is then
applied to both grids; because the starting grid is already close to the optimal, convergence is
very fast. 
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Figure 4: Details at the leading edge of the mesh deformation algorithm. a) Advancing front, b) Only Laplacian
deformation, c) Advancing front with orthogonality correction, and d) Laplacian with orthogonality correction.
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Figure 5: Details at the trailing edge of the mesh deformation algorithm. a) Advancing front, b) Only Laplacian
deformation, c) Advancing front with orthogonality correction, and d) Laplacian with orthogonality correction.
Note: c and d are almost identical grids, because the orthogonality correction is based on the Laplace operator,

and therefore, the solution is unique.

The skewness is used to compare the grid quality with the methods exposed, as shown in
Figure 6. As expected, the Laplacian deformation without orthogonality correction is not able
to maintain the correct skewness of the elements. Hexahedrons are associated to the boundary
layer and a value close to the original grid, previous to the deformation, indicates that most of
the deformation is transferred to the prismatic layer, where is less critical. The presented algo-
rithm, with orthogonality correction, shows a grid quality very close to the original.
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Figure 6: Comparison of the skewness, as a measurement of the quality of the grid. 

4 CONCLUSIONS

A mesh deformation technique with orthogonality correction is presented in this work, in-
spired in the Laplace operator. The proposed method can maintain good grid quality, even in
the case of large deformations. The method is very easy to implement, resulting into an ex-
plicit Jacobi iterative algorithm. Moreover, the algorithm is an element-based data structure
,and it is suitable for parallelization. In comparison, the advancing front algorithm is computa-
tionally more efficient, but the grid quality is uncertain. On the other hand, the Laplacian de-
formation requires an iterative algorithm. Using the grid delivered from the advancing front
algorithm, and then applying the Laplacian deformation correction,  to fix bad shaped ele-
ments, convergence is very quickly reached. 

Future works would extend the proposed method to three dimensional grids and testing the
method for multi-comonent grids. A further research will tackle how to improve the conver-
gence rate to reduce the computational time; one posibility may be to take advantage of multi-
grid techniques.
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