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Abstract. All optimization methods depend on some form of internal model of the problem 

space they are exploring. To build such a model when there are many variables can require a 

large number of analyses to be carried out. Because of these difficulties, it is now common in 

aerospace design to manage explicitly the building and adaptation of the internal surrogate 

model used during optimization. However, it is very difficult to know a priori which surrogate 

model is more suitable for a specific application. As described above, in this paper, the 

performance of two surrogate models, Kriging and Support Vector Regression is compared in 

order to choose the most suitable model targeting a future application within an aerodynamic 

shape optimization process. The selected test case was the DPW wing, from the AIAA Workshop 

on drag prediction, also used in the GARTEUR AD-AG52 on “Surrogate-based global 

optimization for aerodynamic shape design.” 
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1 INTRODUCTION 

 

Surrogate modeling is referred to a group of techniques that make use of previously 

obtained sampled data in order to build surrogate models, which aims to predict the value 

of variables at untried points in the design space. These groups of techniques, also known 

as metamodeling, have been developed from many different disciplines including 

statistics, mathematics, computer science, and various engineering disciplines.  

Different techniques have been studied in the literature, which can be classified in 

three categories [1] such as, (I) the response surface method (RSM) with optimization of 

coefficients for a base function, (II) the neural network approximation (NN) and (III) an 

estimation method using observed values at sampling locations to compute an estimated 

value at an optional location in a solution space. Although these all can be used practically 

in industry, each method has different features that have to be taken into account before 

the application to a particular problem. Several comparisons among those methods have 

been previously described in [2–5]. 

The RSM is one of the very effective approaches for modeling with small numbers of 

design variables and its solution space is not too complex, being successfully used in 

some optimization problems in engineering [6–9]. However, the RSM usually requires 

the assumption of the order of the approximated base function because the approximation 

process is performed using the least-square method for the function coefficients. 

Therefore, the knowledge of the qualitative trend of the entire design space is required by 

the designer, which will sometimes be difficult to determine. This problem will be 

highlighted as the number of design variables increases. 

NN has been used for solving difficult modeling problems [10-11]. NN generally 

minimizes the sum of the approximation errors at sampling locations, so that the accuracy 

of the approximated value at a sampling location is relatively high. However, NN implies 

high computational cost incurred for learning stage and the need for the designer to be 

skilled or experienced in using NN [2]. 

Estimation methods such as Kriging (KR) [12–15], Radial Basis Functions (RBF) [16] 

or Support Vector Regression (SVR) [17,18] usually require more sample points in the 

solution space than RSM or NN within the training stage, in order to perform an accurate 

estimation [19,20]. However, they allow to build complex high non-linear models [21-

24] which it is very difficult to achieve with RSM or too complex with NN. They are then 

found to be a valuable tool to support a wide scope of activities in modern engineering 

design such as chemical and materials engineering [25,26], and other fields such as 

agriculture and ecology [27,28], medicine [29-31] and economy [32]. 

One of the main model applications can be found within the aerospace field [17]. Thus, 

the use of long running expensive simulations in design leads to a fundamental problem 

when trying to compare and contrast various competing options: is very expensive from 

the computational resources point of view to analyze all combinations of variables in the 

design space. This problem is particularly highlighted when using optimization schemes. 

All optimization methods depend on some form of internal model of the problem space 

they are exploring. To build such a model when there are many variables can require large 

numbers of analyses to be carried out. Because of these difficulties it is now common in 

aerospace design to manage explicitly the building and adaptation of the internal model 

used during optimization (Surrogate Based Optimization, SBO). 

Thus, the performance obtained by the surrogate model in SBO schemes is very 

important in order to minimize the number of iterations in the design process, which 

implies expensive Computational Fluid Dynamics (CFD) simulations in a high 
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performance computer (HPC). However, it is very difficult to know a priori which 

surrogate model is more suitable for a specific application.  

 

This paper presents a comparison between two surrogate techniques, KR and SVR, for 

the prediction of aerodynamic coefficients and objective functions for different aircraft’s 

wing geometries, in order to have more information for choosing the most suitable 

surrogate for this kind of application. In order to perform this comparison, both KR and 

SVR have been applied to the DPW-wing [33, 34], used by the GARTEUR AD/AG-52 

Group [35], with the same initial database composed of different geometries. This 

database is derived with high fidelity CFD simulations for use in the initial stage of the 

design process. V-fold cross validation [36, 37] has been used to compare both methods. 

This paper is structured as follows: Section 2 briefly describes both surrogate model 

theory, sampling and model validation methodologies used in this research. Section 3 

describes the database to be modeled by the surrogate models. Section 4 presents the 

comparative results between KR and SVR obtained in the application to the wing case 

described in the previous section. Finally, Section 5 presents the conclusions. 

 

2 SURROGATE MODEL THEORY 

This section briefly describes KR and SVR surrogate modelling. Then, the sampling 

and the model validation methodologies used in this research are stated. 

2.1 Kriging (KR) 

This section recalls the basic KR algorithm, as an interpolation technique. Full 

description of KR algorithm and modifications of basic implementation can be found in 

[1,16,19-21,24]. 

KR can be seen as a two-step process. First, a regression function f(x) is constructed 

based on the data, and, subsequently, a Gaussian process Z(x) is constructed through the 

residuals [1,38]. Thus, the prediction �̂�(𝒙) in x is derived by: 

 

�̂�(𝒙) =  𝑓(𝒙) + 𝑍(𝒙)      (1) 

 

where f(x) is a regression function and Z is a Gaussian process with mean 0, variance σ2 

and a correlation matrix ψ. 

 

Depending on the form of the regression function Kriging has been prefixed with 

different names. Simple Kriging assumes the regression function to be a known constant, 

i.e., f(x)=0. A more popular version is Ordinary Kriging, which assumes a constant but 

unknown regression function f(x), and Universal Kriging, which assumes other more 

complex trend functions such as linear or quadratic polynomials. In general, Universal 

Kriging treats the trend function as a multivariate polynomial: 

 

𝑓(𝑥) =  ∑ 𝛼𝑖

𝑝

𝑖=1

𝑏𝑖(𝑥) 

(2) 

where 𝑏𝑖(𝒙) are 𝑖 = ( 1 …  𝑝) basis functions and α = ( α1 …  α𝑝) denotes the 

coefficients. Therefore, the regression function captures the general trend of the data and 

the Gaussian Process interpolates the residuals. However, selecting the correct regression 

function is a difficult problem, hence, the regression function is often chosen constant. 
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Consider a set of n samples, X = { x1, … , xn } in d dimensions and associated function 

values, y = { y1, … , yn }. Essentially, the regression part is encoded in the n x p model 

matrix F: 

𝐹 =  (

𝑏1(𝒙𝟏) ⋯ 𝑏𝑝(𝒙𝟏)

⋮ ⋱ ⋮
𝑏1(𝒙𝒏) ⋯ 𝑏𝑝(𝒙𝒏)

) 

 

while the stochastic process is mostly defined by the n x n correlation matrix ψ, 

 

ψ =  (
ψ(𝒙𝟏, 𝒙𝟏) ⋯ ψ(𝒙𝟏, 𝒙𝒏)

⋮ ⋱ ⋮
ψ(𝒙𝒏, 𝒙𝟏) ⋯ ψ(𝒙𝒏, 𝒙𝒏)

) 

 

where ψ(𝒙𝒊, 𝒙𝒋) is the correlation function. ψ(𝒙𝒊, 𝒙𝒋) is parametrized by a set of 

hyperparameters θ, which are identified by Maximum Likelihood Estimation (MLE) 

[39,40]. Subsequently, the prediction mean and prediction variance of KR are derived, 

respectively, as, 

𝜇(𝒙) =  𝑀𝛼 + 𝑟(𝒙) ψ−1 (𝐲 − 𝐅α)    (3) 

 

𝑠2(𝒙) =  σ2 ( 1 − 𝑟(𝒙) ψ−1𝑟(𝒙)𝑇 +  
1−( 𝐹𝑇 ψ−1𝑟(𝒙)𝑇 

 𝐹𝑇 ψ−1 𝐹
)   (4) 

 

where 𝑀 = ( 𝑏1(𝒙) … 𝑏𝑝(𝒙) ) is the model matrix of the predicting point x, and 𝑟(𝒙) =

( ψ(𝒙, 𝒙𝟏) …  ψ(𝒙, 𝒙𝒏) ) is an 1 x n vector of correlations between the point x and the 

samples X. The process variance σ2 is given by: 

 

 σ2 =
1

n
 (𝐲 − 𝐅α)𝑇 ψ−1 (𝐲 − 𝐅α)     (5) 

and the coefficients of the regression function, 𝛼, are determined by Generalized Least 

Squares (GLS) by: 

𝛼 =  ( 𝐹𝑇 ψ−1 𝐹 )−1 𝐹𝑇 ψ−1𝒚     (6) 

 

2.2 Support Vector Machines (SVR) 

SVR can be solved as a convex optimization problem using kernel theory to face non-

linear problems. Thus, SVR consider not only the prediction error but also the 

generalization of the model [17,41]. 

SVR consist of training a model with the form 𝑦 = 𝑤𝑇𝜙(𝑥) + 𝑏 given a set of 

parameters 𝐶 = {(𝑥𝑖, 𝑦𝑖)}, 𝑖 = 1,2, … , 𝑙}, to minimize a general risk function of the form: 

𝑅[𝑓] =
1

2
||𝑤||

2
+

1

2
𝐶 ∑ 𝐿(𝑦𝑖, 𝑓(𝑥))

𝑙

𝑖=1

 (7) 

 

where 𝑤 controls the smoothness of the model, 𝜙(𝑥) is a function of projection of the 

inputs space 𝑤 to the feature space, 𝑏 is a parameter of bias, 𝑥𝑖 is a feature vector of the 

input space with dimension 𝑁, 𝑦𝑖 is the output value to be estimated and 𝐿(𝑦𝑖, 𝑓(𝑥)) is 

the loss function selected. In this study, the 𝐿1 support vector regression (𝐿1 − 𝑆𝑉𝑅) is 

used, 

4107



D. Viúdez-Moreiras, E. Andrés-Pérez, D. González-Juárez and M. J. Martin Burgos 

 

𝐿(𝑦𝑖, 𝑓(𝑥)) = |𝑦𝑖 + 𝑓(𝑥𝑖)|𝜀 (8) 

In order to train this model, it is necessary to solve the following optimization problem: 

min (
1

2
||𝑤||

2
+

1

2
𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

+ 𝜉𝑖
∗) (9) 

subject to: 

yi − 𝑤T 𝜙(𝑥) − 𝑏 ≤  𝜀 + 𝜉𝑖, 𝑖 = 1, … , 𝑙 

−yi + 𝑤T 𝜙(𝑥) + 𝑏 ≤  𝜀 + 𝜉𝑖
∗, 𝑖 = 1, … , 𝑙 

𝜉𝑖𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙 

(10) 

To do this, a dual form is usually applied, obtained from the minimization of the Lagrange 

function that joins the function to minimize and the constraints: 

max (−
1

2
∑ (𝛼𝑖 + 𝛼𝑖

∗)(𝛼𝑗 + 𝛼𝑗
∗)𝐾(𝑥𝑖 + 𝑥𝑗)

𝑙

𝑖,𝑗=1

−  𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +

𝑙

𝑖=1

∑ 𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

) 

(11) 

subject to the following constraint: 

∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

= 0, 𝛼𝑖 , 𝛼𝑖
∗ ∈ [0, 𝐶]  (12) 

In addition to the constraints, also must be taken in account the Karush-Kuhn-Tucker 

conditions and obtain the bias value. In the dual formulation, the apparition of the kernel 

function 𝐾(𝑥𝑖 , 𝑥𝑗) must be emphasized, which is equivalent to the scalar 

product⟨𝜙(𝑥𝑖 )|𝜙(𝑥𝑗)⟩. In this case, the kernel function is a Gaussian function: 

𝐾 = exp (−𝛾 · ||𝑥𝑖 − 𝑥𝑗||
2

)  (13) 

The final form of the regression model depends on the Lagrange multipliers 𝛼𝑖 , 𝛼𝑖
∗, 

following the expression: 

𝑓(𝑥) =  ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑙

𝑖=1

 (14) 

In this way, SVR model depends on three parameters, 𝜀, 𝐶 and 𝛾. (I) 𝜀 parameter controls 

the error margin permitted for the model, as can be seen in equations (9) and (10). (II) 𝐶 

parameter controls the number of outliers allowed on the optimization of the equation (3). 

Finally, (III) 𝛾 parameter determines the Gaussian variance for the kernel. Depending on 
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the selection of these values, the model can have different performance. To obtain the 

best SVR performance, search of the most suitable combination of these three parameters 

must be performed, usually by means of cross validation techniques over the training set, 

as explained in Section 2.4. To reduce the computational time of this process, different 

methods have been proposed in the literature to reduce the search space related to these 

parameters. In this case, it has been applied the one developed in [41], which has proven 

to require pretty short search times. 

 

2.3 DESIGN OF EXPERIMENTS (DOE) METHODOLOGY 

Both KR and SVR surrogate models have been applied to the database generated with 

the DLR TAU solver [42] for a set of initial wing geometries. Therefore, a suitable Design 

of Experiments (DoE) technique, that envelopes the design space, is required. 

When the initial database is produced by a deterministic computer code, as opposed to 

a physical experiment or stochastic analysis, a given input will always yield the same 

output, because there is no measurement error or other random sources of noise. Under 

these conditions, the DoE need only be space-filling [43,44] so that all regions of the 

design space Ω as a subset of ℝ𝑁𝑆, being NS the number of independent variables of the 

design space, are sampled. A commonly used space-filling design is Latin hypercube 

sampling (LHS) [45], which has been used as sampling methodology in this study in order 

to perform the comparison between KR and SVR. In LHS, each input parameter is 

partitioned into N equally spaced sections. Each input parameter is sampled once in each 

section, resulting in a column vector 𝒙i containing NS different values of the input 

parameter. The column vectors for each input parameter are arranged side by side into a 

matrix and the components of the vectors are then randomly reordered. The resulting 

training set 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁} is a matrix of size N x NS, known as a Latin hypercube, 

in which each row corresponds to a different training case defined by the input 

parameters. 

In this particular case, NS columns correspond to the z-axis coordinates of different 

control points distributed by the wing surface to optimize. N sets of coordinates are 

derived, in order to obtain the aerodynamic coefficients by means of CFD and, in this 

way, perform the initial database in order to train in the same conditions both surrogate 

models. 

2.4 METRICS FOR MODEL VALIDATION 

In most real applications, only a limited amount of data is available, which leads to the 

idea of splitting the data: part of data, the training sample, is used for training the 

algorithm, and the remaining data, the validation sample, is used for evaluating the 

performance of the algorithm. The validation sample can play the role of “new data”.  

A single data split yields a validation estimate of the risk, and averaging over several 

splits yields a cross-validation estimate. V-fold CV (VFCV) was introduced in [46] and 

now is widely used as a model validation technique within surrogate modelling. Thus, the 

methodology used in this paper to obtain the model performance in order to obtain the 

surrogate models comparison is, for a training set 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁}, the following: 

a. Partition the training set 𝑋 into 𝐾 independent equal-sized subsets 𝑋𝑘, 
  𝑘 = 1, … , 𝐾 such as 𝑋 = 𝑋1 ∪ 𝑋2 ∪ … ∪ 𝑋𝐾; 

b. for 𝑘 = 1, … , 𝐾 

i. train the prediction model on 𝑋(−𝑘) = 𝑋\𝑋𝑘 ; 

ii. test the prediction model on 𝑋𝑘 
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iii. ∀ 𝒙𝑖 ∈ 𝑋𝑘 compute the values of �̂�−𝑘(𝑖)(𝒙𝑖), 

iv. Derive the quadratic error between the real 𝑦𝑖 and the estimated 

�̂�−𝑘(𝑖)(𝒙𝑖) values: 

 SE= (𝑦𝑖 − �̂�−𝑘(𝑖)(𝒙𝑖))
2

      (15) 

c. Estimate the following metrics: 
i. Mean Squared Error of �̂� 

𝑀𝑆𝐸(�̂�) =
1

𝑁
∑ (𝑦𝑖 − �̂�−𝑘(𝑖)(𝒙𝑖))

2
𝑁
𝑖=1    (16) 

ii. R-squared 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖)2

𝑖

∑ (𝑦𝑖−�̅�𝑖)2
𝑖

     (17) 

    where �̅� is the mean value of the true values 𝑦𝑖. 

 

iii. Pearson’s correlation coefficient 

 

𝜌 =
𝑁 ∑ 𝑦𝑖�̂�−𝑘(𝑖)(𝑥𝑖)𝑁

𝑖=1 −∑ 𝑦𝑖 ∑ �̂�−𝑘(𝑖)(𝑥𝑖)𝑁
𝑖=1

𝑁
𝑖=1

√𝑁 ∑ 𝑦𝑖
2𝑁

𝑖=1 −(∑ 𝑦𝑖
𝑁
𝑖=1 )

2
√𝑁 ∑ [�̂�−𝑘(𝑖)(𝑥𝑖)]

2𝑁
𝑖=1 −[∑ �̂�−𝑘(𝑖)(𝑥𝑖)𝑁

𝑖=1 ]
2
  (18) 

 

The MSE metric gives an estimate of the expected test error by using the squared error 

as loss function. It ranges between zero and plus infinity, smaller values indicate smaller 

errors. The Pearson’s correlation coefficient ranges between -1 and 1 and provides the 

ratio between the covariance of 𝑦 and �̂� and the product of their standard deviations. In 

other words, it measure the tendency of �̂� to vary in function of 𝑦. If 𝜌 is close to zero, 𝑦 

and �̂� are weakly correlated and, hence, is expected that the prediction model �̂� badly 

reproduces the variation of the function 𝑦. On the other hand, if 𝜌 approaches the unity 

value, a strong correlation between the variables and the two datasets 𝑦𝑖 and  �̂�−𝑘(𝑖)(𝑥𝑖) 

is obtained. If 𝜌 is close to -1, anti-correlation exists and is expected that, for positive 

variation of 𝑦, negative variation of �̂� is obtained. 
 

 

3 AERODYNAMIC DATABASE USED FOR SURROGATE COMPARISON 

This section describes how the database, to be used for comparison and validation 

purposes, was generated from the DPW-W1 wing baseline geometry [33], whose 

reference quantities for this wing are displayed in Table 1.  

 

Reference quantity Value 

Sref (wing reference area) 290,322 mm2 

Cref (wing reference chord) 197.55 mm 

Xref (relative to the wing root leading edge) 154.24 mm  

b/2 (semi span) 762 mm 

AR  (aspect ratio, AR=b2/Sref ) 8 
Table 1: Reference quantities for the DPW wing 

 

As can be seen in Fig. 1, in order to generate the database, the DPW geometry was 

parameterized by a 3D control box, with 5 control points in direction u, 10 in direction v 

and 5 in direction w. The parametric u direction corresponds to the y-axis, the v direction 

to the x-axis, and the w direction to the z-axis. The vertical displacement of those control 
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points, which correspond to the design space, set up on the aerodynamic surface. The 

wing is split in three profile sections and the transition between sections is linear. Each 

section has 6 active control points for the upper side and other 6 for the lower side, which 

are independent (the movement of a control point at the upper side does not modify the 

lower side and vice versa), with a total of NS=36 design variables for the whole wing. 

 

Figure 1: DPW wing parameterization 

The initial database X was performed according to the methodology described in 

previous sections, executing 180 cases for position changes of the 36 design control points 

by means of DLR TAU solver in a High Performance Computer platform (HPC). Each 

design variable has been constrained by its minimum and maximum values that will be 

chosen as +/- 20% of their original value. In addition, other constraints, such as airfoil’s 

maximum thickness and beam constraints have been defined, according to [34]. The flow 

conditions are Mach = 0.80, angle of attack 0 deg and Reynolds, 5*106. 

The design goal for the SBO is to achieve a geometry with the minimum drag, while 

maintaining the specified aerodynamic constraints: 

1. Prescribed constant lift coefficient (𝐶𝐿 = 𝐶𝐿
0). 

2. Minimum pitching moment: 𝐶𝑀 ≥ 𝐶𝑀
0 . 

3. Drag penalty: If constraint in minimum pitching moment is not satisfied, the 

penalty will be 1 drag count per 0.01 increment in 𝐶𝑀. 

 

Therefore, an objective function was derived, based on the lift, drag and pitching 

moment aerodynamic coefficients obtained by the DLR TAU code, and the previously 

mentioned constraints [17]. This objective function will be modeled by the surrogate 

model in order to predict new values within the SBO scheme. 

 

 

 

 

4 EXPERIMENTAL AND COMPARATIVE RESULTS 

 

Surrogate modeling has been applied to the database X. As described in Section 3, this 

database has N=180 samples and NS=36 columns, with a +/-20% variation of the design 

variables from the base geometry. Thus, both KR and SVR methodologies have been 
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applied in the same conditions, validating them with 10-fold CV as described in Section 

2.4. 

Figure 2 shows the R2 comparison between KR and SVR. In the KR case, R2 is 0.8239, 

62.7% greater than the value obtained with SVR (0.5064). This difference can be seen to 

a lesser extent in the Pearson coefficient stated in Table 2, with a 27.6% of variation. In 

addition, the MSE and the RMSE have a difference of 58.3% and 35.4% respectively. 

 

 

 

Figure 2: R2 comparison between KR (above) and SVR (below). 

 

Thus, KR seems to offer a better performance than SVR, applied to the DPW 

prediction of the objective function. This study allows to select the best surrogate model 

between SVR and KR based on experimental data, due to it is very difficult to know a 

priori which surrogate model is more suitable for a specific application.   

 

 

y = 0.6649x + 0.3853
R² = 0.8239
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  SVR KRIGING Difference 

MSE 7.8093E-03 3.2580E-03 58.3% 

RMSE 8.8370E-02 5.7079E-02 35.4% 

Pearson 0.7116 0.9077 27.6% 

R2 0.5064 0.8239 62.7% 

Table 2: Summary of performance comparison between KR and SVR. 

 

5 CONCLUSIONS AND FUTURE WORKS 

This paper describes the comparison between two different surrogate models, Kriging 

(KR) and Support Vector Regression Machines (SVR), for prediction of the objective 

function within different aerodynamic configurations, with the aim of aerodynamic 

optimization. In order to carry out this comparison, both KR and SVR have been applied 

to the same training database generated with CFD simulations for different geometries. 

V-fold cross validation has been used to compare both methods, showing the better 

performance obtained by KR methodology. 

Future work will focus on studying the relationship between the model performance 

and the number of design variables and other parameters with influence, in order to 

minimize the required CFD simulations for the initial database, and therefore speed up 

the design process. 
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