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Abstract This paper describes a method for mesh adaptation in the presence of intersections, such

as wing-fuselage. Automatic optimization tools, using Computational Fluid Dynamics (CFD) sim-

ulations, face the problem to adapt the computational grid upon deformations of the boundary sur-

face. When mesh regeneration is not feasible, due to the high cost to build up the computational

grid, mesh deformation techniques are considered a cheap approach to adapt the mesh to changes

on the geometry. Mesh adaptation is a well-known subject in the literature; however, there is very

little work which deals with moving intersections. Without a proper treatment of the intersections,

the use of automatic optimization methods for aircraft design is limited to individual components.

The proposed method takes advantage of the CAD description, which usually comes in the form of

Non-Uniform Rational B-Splines (NURBS) patches. This paper describes an algorithm to recalcu-

late the intersection line between two parametric surfaces. Then, the surface mesh is adapted to the

moving intersection in parametric coordinates. Finally, the deformation is propagated through the

volumetric mesh. The proposed method is tested with the DLR F6 wing-body configuration.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In shape optimization problems,1–3 the baseline geometry is

modified in the search of an optimal shape. In each of the
geometry modifications, it is required to update the mesh,
and this can be achieved by using an automatic remeshing

process. In the context of aircraft design, the grid generation
of complex configurations involving several components is
usually an expensive and time-consuming task that requires
great expertise. In order to avoid the regeneration of the
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computational grid, automatic mesh deformation techniques4,5

are considered a fast approach for small deformations, which
is commonly employed in automatic optimization loops and

aero-elastic simulations.
However, surface mesh deformation methods still suffer

several limitations in the presence of moving intersections,

such as wing-fuselage and wing-pylon-nacelle assemblies.
Without a proper treatment of intersections, the use of auto-
matic optimization methods for aircraft design is limited to

individual components. In addition, once these components
are assembled, the aerodynamic properties might be signifi-
cantly different because of the fluid interaction between them.

In general, the intersection curve between two Non-

Uniform Rational B-Splines (NURBS) surfaces cannot be
determined analytically. There have been several attempts in
the literature to address this problem. T-splines are designed

to deal with trimming NURBS, although they might present
difficulties to represent a watertight curve intersection.6 The
term ‘‘watertight” connotes no unwanted gaps or holes. The

surface/surface intersection between NURBS is tackled in the
research of Sederberg et al.7 by using a moving algorithm: first,
a local unit step direction H is determined by intersecting the

tangent planes of the two surfaces, and guessing a new approx-
imation P1 = P0 + LH, where L is determined from an adap-
tive method. P1 is approximated from a point at the
intersection P0 and the direction tangent to both planes. In

addition, in the research done by Gagnon and Zingg,8 the
geometries are defined analytically with watertight networks
of surfaces and the approach is applied to a lift-constrained

drag minimization of a conventional regional jet. Moreover,
in the work of Hwang and Martins,9 the approach is to model
an aircraft as a union of untrimmed surfaces (i.e. surfaces with

four topological edges). Regarding surface mesh deformation,
different approaches are proposed to use spring/mass type ide-
alization10–12 or solving elasticity equations13–15. In this work,

an adaptation based on the Laplacian field is suggested.
This method takes advantage of the CAD definition, in the

form of NURBS surfaces, to recalculate the intersection, and
therefore, requires deforming the NURBS along with the grid.

This parametrization is widely supported by software tools,
but for optimization applications, the final shape is strongly
conditioned by the number and distribution of the control

points. NURBS extracted directly from the CAD-file are unli-
kely suitable for optimization. Thus, a new NURBS needs to
be generated, which still represents the original geometry

within acceptable error margins, which is a time-consuming
task that requires a great deal of expertise.

The above issue does not appear using differentiable volu-
metric methods, such as Free Form Deformation (FFD),16

and its extension to volumetric B-splines control box.17 The
intersection between components is accurately calculated in
each optimization step, while at the same time, the CAD file

is preserved to easily share the geometry between software
applications (for instance, in case of coupled fluid–structure
optimization problems). After the computation of the intersec-

tion line, the surface mesh vertices are deformed by following
their NURBS parametric coordinates, which have been previ-
ously obtained from the mesh generation application or calcu-

lated with an appropriate inversion point technique.18,19

Finally, the surface grid is updated to match the moving
intersection with a mesh deformation algorithm. Once the
surface grid is properly adapted to the new configuration, a
volumetric adaptation is employed to build the new computa-
tional grid.

The control box extends the FFD concept, using NURBS

basis. This technique requires the additional effort of calculat-
ing the parametric coordinates from the spatial coordinates
through an appropriate point inversion algorithm. However,

the control box approach has important advantages over
FFD, such as deformation locality, arbitrary setup of the con-
trol points, selection of the smoothness and the ability to

choose the order of the interpolation, while achieving the same
pleasing deformation characteristics as surface NURBS. Actu-
ally, the conventional FFD can be considered a subset of con-
trol box.

Additionally, some parameterizations can fuse components
into the same description, so wing-fuselage surfaces are treated
as a single entity with all the deformation being continuous

and the intersection naturally adapted. However, there is an
important advantage of describing specific components with
a unique set of NURBS. Different aircraft components, such

as wing, fuselage, nose and pylon, require different skills and
expertise, and it is generally convenient to keep them intact
while one component is optimized. For example, modifications

of the wing should not modify the fuselage geometry. Without
an underlying geometry, provided by NURBS, global defor-
mations might result in unwanted modifications of other
components.

This paper is structured as follows: the next section briefly
introduces the mathematical background of NURBS. Then,
Section 3 describes the proposed mesh adaptation strategy,

giving details on the inversion point, intersection recalculation
and surface deformation algorithms. Finally, the proposed
strategy is applied to three different deformation scenarios

(bump, rotation and displacement movements of the wing)
of the DLR F6 wing-body configuration and an analysis of
the performance and mesh quality metrics are provided in

order to validate the approach. The DLR-F6, is a simplified
wing-fuselage geometry which has been used for the validation
of CFD codes at the AIAA sponsored Drag Prediction
Workshops.

2. Mathematical background: Brief introduction to NURBS

NURBS are a standardized geometric description frequently

employed by CAD applications to represent a surface skin.
By incorporating the NURBS in the design loop, the effort
to exchange information in a suitable format between different

disciplines, such as aero-dynamic/structural analysis and post-
processing tools, is significantly reduced.8,9 The aerodynamic
surface of an aircraft cannot be usually defined with a contin-

uous shape for the whole geometry, and therefore, several
NURBS patches have to be employed to assemble the different
sections defining intersections and continuity conditions.

From the mathematical point of view, NURBS surfaces20

are parametric representations defined as

Sðn; gÞ ¼
PN

i

PM
j U

p
i ðnÞVq

j ðgÞwijCijPN
i

PM
j U

p
i ðnÞVq

j ðgÞwij

ð1Þ

where {n, g} are the parametric coordinates, U and V the basis
functions of orders p and q respectively, Cij the control points,
and wij the weights. One of the most effective methods to cal-
culate the basis functions is through a recursive algorithm,
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which in the literature is referred to as the De Boor’s

algorithm21

Up
i ðtÞ ¼

1 if ui 6 uiþ1

0 otherwise

�

Up
i ¼

ðt� uiÞUp�1
i ðtÞ

uiþp�1 � ui
þ ðuiþp � tÞUp�1

iþ1 ðtÞ
uiþp � uiþ1

8>>><
>>>: ð2Þ

The terms ui are coefficients from the so called knot vector,
which is a sequence of real numbers that frequently have mul-

tiplicity at the beginning and the end of f0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
pþ1

; . . . ; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
pþ1

g

to ensure that the extremes are not ill-defined and t is the

parameter, which range from 0 to 1.
The link between the computational grid, employed for

Computational Fluid Dynamics (CFD) simulations, and the

CAD geometry, defined by NURBS patches, requires the
knowledge of the parametric coordinates {n, g} of each surface
vertex. With this information, it is possible to recalculate the

spatial coordinates of the vertex, given a displacement of the
NURBS control points. The calculation of the parametric
coordinates from the spatial ones is usually referred to as the

so-called inversion point problem.

3. Proposed method for surface mesh deformation with

intersections handling

3.1. Flowchart of proposed strategy

The proposed strategy for surface mesh deformation comprises
several steps (Fig. 1).

First, the CAD geometry is extracted from the Initial

Graphics Exchange Specification (IGES) file, as a collection
of several NURBS patches. Then, the parametric coordinates
of the surface grid points are calculated using the inversion

point algorithm explained in Section 3.2 (Notice that the points
in the intersection line have two pairs of parametric coordi-
nates, one for each intersecting NURBS panel). Then, the

deformation is applied to the NURBS and therefore the inter-
section between NURBS panels (in parametric coordinates)
{n*, g*} has to be recalculated, as detailed in Section 3.3. After
that, the parametric coordinates {n0, g0} of the surface grid

points are updated to match the new intersection, using the
Fig. 1 Flowchart of p
deformation algorithm proposed in Section 3.4. From the
updated parametric coordinates, the Cartesian coordinates of
the surface grid points {x0, y0, z0} are calculated. Finally, the

surface deformation is propagated to the volumetric grid, using
a conventional deformation algorithm. In this work, the DLR’s
TAU deformation module22 has been used. The unsteady

TAU-Code solves the compressible, three-dimensional
Reynolds-Averaged Navier–Stokes equations using a finite vol-
ume formulation. The TAU-Code is based on a hybrid

unstructured-grid approach, which makes use of the advan-
tages of semi-structured prismatic grids in the viscous shear lay-
ers near walls, and the flexibility in grid generation offered by
tetrahedral grids in the surrounding flow volume. The TAU-

Code consists of several different modules, including the defor-
mation module, which propagates the deformation of surface
grid points to the surrounding volume grid.

3.2. Calculating parametric coordinates of surface grid points

(Inversion point algorithm)

The inversion point algorithm calculates the parametric coor-
dinates from the Cartesian coordinates of each surface grid
point; R3(x, y, z) ? R2 (n, g). This is required when this

information is not provided from the mesh generation soft-
ware or when mesh refinement techniques are involved. The
parametric coordinates of a surface vertex P are calculated
as the projection Q* to the surface S; understanding projec-

tion as the surface point of minimum distance is illustrated
in Fig. 2, while Q0 is an initial arbitrary approximation point
on the surface.

The goal is to find the parametric coordinates of Q* by solv-
ing the following expression

minðjP� Sðn; gÞj2Þ ð3Þ
where P is a point to be projected, not necessarily on the sur-
face. Provided with a suitable initial estimation {n, g}0, the
parametric coordinates of the projection can be efficiently
computed with a Newton–Raphson algorithm:

fn; ggnþ1 ¼ fn; ggn � f

f 0 ð4Þ

To simplify the notation, we call Q = S (n, g). The objec-

tive function and its derivatives are
roposed approach.



Fig. 2 Scheme of inversion point as a projection from Cartesian

space to parametric surface S.
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f ¼ jP� Sðn; gÞj2 ¼ jP�Qj2

f0 ¼ fn

fg
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ð5Þ

where f is the Euclidian distance and f0 is the Jacobian matrix,

with respect each parametric direction. Multiplying the
denominator in Eq. (4) by its transpose and simplifying lead
to the following iterative algorithm

Dn ¼
ðP�QiÞ � @Sðn;gÞ

@n

h i
� @Sðn;gÞ

@n

��� ���2 � ðP�QiÞ � @Sðn;gÞ
@g

h i
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@g

h i
d
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8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ
where the symbol * denotes the dot product, while � the con-

ventional scalar product. Notice that |a|2 = a * a. The above
expression can be interpreted as the projection of P to the
plane tangent to the surface at Q and it is a general expression

for parametric surfaces (not limited to NURBS).
One critical aspect is to provide a suitable initial value for

the algorithm to converge. One approach consists of calculat-
ing the projection of the vertex to the NURBS control poly-

gon19; this is the surface formed by the control points or the
equivalent second order NURBS surface. NURBS basis are
monotone positive functions, but knots, kinks, edges and other

discontinuities might create convergence problems.

3.3. Treatment of intersection

Surface grid points at joints and intersections belong to more
than one NURBS surfaces. For instance, in a wing-body con-
figuration, the geometry of the wing is represented by the

NURBS surface Sa, while the geometry of the fuselage is rep-
resented by Sb. Vertices at the intersection are represented by
two pairs of parametric coordinates {na, ga} and {nb, gb},
one for each NURBS. At the intersection of two surfaces Sa

and Sb, the parametric coordinates satisfy Sa(na, ga) = Sb(nb,
gb). The intersection is obtained by solving the following three
non-linear equations with four unknowns.

Saðn; gÞ � Sbðn; gÞ ¼ 0 ð7Þ
In this particular problem, the intersection curve is not

required, but the parametric coordinates {na, ga} and {nb, gb}
for all vertices at the intersection are required, once the
intersection has moved. To simplify the notation, let us call
P = Sa(na, ga) and Q= Sb(nb, gb), the spatial coordinates of
the vertex calculated from the first and second pair of paramet-

ric coordinates respectively (Fig. 3).
After a movement on the surface, the original parametric

values at the intersection {na, ga}
0 and {nb, gb}

0 no longer cor-

respond to the same spatial location, because the intersection is
now represented by a different set of parametric coordinates.
For relatively small deformations, the new parametric coordi-

nates can be efficiently computed with the previous iterative
algorithm employed for the inversion point algorithm in Eq.
(6). Equivalently, the intersection can be found as the projec-
tion of P on Sb and Q on Sa. For numerical robustness, the

denominator in Eq. (6) is 2d (instead of just d). Given starting
points P0 and Q0, the strategy is to alternate the projection of
P and Q at each iteration:

fna; gag1 ¼ fna; gag0 �
fðn0a; g0a;P0;Q0Þ
f0ðn0a; g0a;P0;Q0Þ

P1 ¼ Saðn1a; g1aÞ

fnb; gbg1 ¼ fnb; gbg0 �
fðn0b; g0b;P1;Q0Þ
f0ðn0b; g0b;P1;Q0Þ

Q1 ¼ Sbðn1b; g1bÞ
� � �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

At each iteration, the above algorithm projects the line PQ
!

onto the plane defined by the derivatives, until it finds the
intersection. After the deformation, the initial values can be

the original ones. However, robust solutions are also obtained
by approximating the surface grid vertices displaced by the
deformation, which does not provide an exact solution, but
it is closer than the original vertex coordinates.

3.4. Surface mesh deformation

Once the parametric coordinates of the surface vertex at the

intersection are recalculated, the surface grid should be
adapted to the new configuration. A perturbation of a Lapla-
cian field, after linearization, can be expressed with the follow-

ing equation

a0 ¼
P

iðxi � x0
i Þ � /ðxi; aÞP

i/ðxi; aÞ þ a0 ð9Þ

In the above expression, a is the vertex parametric coordi-

nates, which is connected to xi nodes (Fig. 4).
The notation x0 indicates the original position of the node,

while the term /(x, a) is an arbitrary constant weight func-

tion. One value that works well is the inverse of the square
of the Euclidean distance between the nodes.

/ðxi; aÞ ¼ jx0
i � a0j�2 ð10Þ

In this way, deformations are mostly absorbed by the big

elements of the grid, while small elements, such as those at
the boundary layer, remain rigid. The system of equations gen-
erated can be solved iteratively with a Jacobi algorithm until

the residual converges to zero ðxtþ1
i � xt

iÞ ! 0 as follows

atþ1 ¼
P

iðxtþ1
i � x0

i Þ � /ðxi; aÞP
i/ðxi; aÞ þ a0 ð11Þ



Fig. 3 Notation of recalculating parametric coordinates.

Fig. 4 Scheme of displacement of vertex parametric coordinates

a due to displacement of x1.

Table 1 Summary of proposed methodology for surface mesh

deformation with intersections handling.

Inputs: grid, geometry (IGES format)

Output: grid, geometry (IGES format)

#inversion point

For each surface vertex that belongs to the NURBS panel Sa and Sb

provide an initial estimation {n, g}0

compute Newton–Raphson algorithm as indicated in Eq. (4) to

obtain {n, g}
End

#recalculate intersection

For each surface vertex that belongs to the intersection

recalculate its parametric coordinates as indicated in Eq. (8), so

Sa(na, ga) = Sb(na, ga)
End

#surface deformation

For each surface vertex that belongs to the NURBS panel Sa

deform the mesh (in parametric coordinates) with a

deformation algorithm, as indicated in Eq. (11);

use the new intersection previously calculated as a boundary.

idem with each surface vertex that belongs to the NURBS

panel Sb

recalculate the Cartesian coordinates {x,y,z} = S(n, g) with

the new parametric coordinates

End for
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This method is very easy to implement and fully explicit

without requirement of inverting a large matrix system. In this
scheme, each parametric coordinate is solved independently, so
the deformation algorithm is performed twice, one for n and

one for g. Eq. (11) resembles an algorithm to solve the Laplace
equation. Because the solution of the Laplace equation is
unique, the above algorithm always converges to a unique

state, independently of the starting values or the order of the
computations.

By performing the adaptation on parametric coordinates,
surface vertices are ensured to be on the geometric CAD

definition, defined by the NURBS patches. Fig. 5 shows how
the adaptation performs in parametric coordinates in the
wing-fuselage test case.

The complete strategy is summarized in the following
algorithm: (see Table 1).
Fig. 5 Example of adaptation of fuselage vertex parametric coordinates upon a deformation of wing using presented deformation

algorithm.
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3.5. Considerations on scheme differentiation for aerodynamic
shape optimization

In this particular approach, the design variables are the move-
ment of the control points. Gradients can be calculated via

finite differentiation, which is mathematically simple but com-
putationally expensive, as it requires one simulation for each
design variable. The advantage of finite differences is that gra-
dients can be calculated as a black box including the effect of

the moving intersection.
Alternatively, the adjoint method is more efficient to com-

pute the gradients, as the number of runs is essentially inde-

pendent from the number of design variables. In the
continuous adjoint approach, gradients are computed as the
integration over the surface, which turns into a summation

over the finite surface elements of the computational grid:

dJ ¼
X
S

dj � ðdx � nÞds

where dJ are the gradients calculated on the design variables,
dj are the sensitivities provided by the adjoint to each surface

vertex, dx are the geometric sensitivities (that is, how the sur-
face is modified by a movement of the design variable), n is the
surface normal, and ds is the element dual area associated to

the vertex. At the intersection, there is geometric discontinuity,
where both geometric sensitivity and normal are undetermined
and gradients might also be inaccurate,3,23 since there are tan-
gential terms that are not included in the above formulation.23

Although the effect of those vertices might be ‘‘diluted” in the
integration, the effect of the gradients can be estimated as the
combined effect of two dummy vertices very close to the inter-

section (one for each intersecting surface).

4. Numerical results

In order to validate the performance of the proposed
approach, it was applied to the DLR-F6 wing-body aircraft
configuration, which also includes a nacelle/pylon component

(Fig. 6). This configuration was used in the 3rd AIAA CFD
Drag Prediction Workshop24 and the IGES geometry defini-
tion considered in this paper has been downloaded from that

workshop website.
In this test case, the wing geometry is defined with 7

NURBS patches, the pylon geometry is defined with 20
Fig. 6 DLR F6 wing-body-pylon-nacelle configuration.
NURBS patches and the central fuselage is defined with 1
patch. The surface grid is composed of 56.322 vertices and
112.644 triangle elements.

Three different scenarios (bump deformation, rotation and
displacement of the wing) are addressed (Fig. 7). In the first
scenario, the wing is displaced in the forward direction along

the fuselage. Then, in the second scenario, the upper side of
the wing that intersects with the fuselage is modified with a
bump deformation. Finally, in the third scenario, the wing is

rotated. The fuselage remains intact in all the deformation
scenarios.

4.1. Test case scenario number 1: Wing displacement along
fuselage

In the first scenario, the wing is displaced in the forward direc-
tion along the fuselage (Fig. 8). It can also be observed how,

after this displacement, the computational grid is strongly
damaged and therefore needs to be fixed. The surface grid
close to the junction between the fuselage and the wing is

required to be adapted.
Figs. 9 and 10 show how the surface grid is fixed using the

presented methodology. Notice that the deformation is

restricted to the panel that represents the central section of
the fuselage.

4.2. Test case scenario number 2: Bump deformation on upper
side of wing

In the second deformation scenario, the patch that repre-
sents the upper side of the wing section is modified with

a large bump deformation, while the fuselage remains
intact. Fig. 11 shows the baseline and deformed
configurations.

Mesh deformation is then applied to both fuselage and
wing surface grids, although the deformation is more severe
at the fuselage and therefore requires more extensive re-

arrangement. For illustration purpose, only the fuselage
grid is shown. Figs. 12 and 13 show the surface grid
adaptation.

4.3. Test case scenario number 3: Wing rotation

In the third deformation scenario, the wing is rotated while
the fuselage remains intact. Fig. 14 shows the baseline and

deformed configurations.
Mesh deformation is then applied to both fuselage and

wing surface grids, although the deformation is more severe

at the fuselage and therefore requires more extensive re-
arrangement. For illustration purpose, only the fuselage grid
is shown.

Figs. 15 and 16 show the surface grid adaptation by
employing NURBS.

4.4. Mesh quality analysis after deformation

In order to complete the validation of the proposed strategy,
the quality of the deformed grids has been computed and com-
pared to the original grid. Table 2 shows the comparison of

several grid quality metrics (minimum, maximum and mean



Fig. 7 Deformation scenarios considered for validation of proposed approach.

Fig. 8 Displacement of wing in forward direction.

Fig. 9 Grid adaptation upon displacement of wing with NURBS (left) and details of grid adaptation (right).

Fig. 10 Adaptation of surface grid with NURBS.
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q value, and minimum dihedral angle) for each of the three
deformation scenarios, together with the values on the baseline
grid. It can be observed that the minimum grid quality value is

reduced in all the deformation scenarios, especially in the wing
rotation. In addition, the rotation shows a strong reduction of
the minimum dihedral angle, which means that this deforma-

tion is the most critical one in terms of maintaining grid qual-
ity. However, the mean quality remains acceptable for all the
deformation scenarios.

The histogram of the quality metric intervals with respect to
the number of mesh elements is displayed in Fig. 17, showing a
similar distribution between the original grid and the three
deformed ones.



Fig. 11 Deformation of upper side of wing in the second scenario.

Fig. 12 Surface grid adaptation upon deformation of upper side of wing by using NURBS (left) and details near trailing edge (right).

Fig. 13 Grid adaptation using NURBS based strategy has

preserved underlying fuselage geometry.

Fig. 14 Deformation of upper sid
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Finally, Table 3 shows the number of mesh elements in each

of the grid quality intervals. Although the quality of the
deformed grid is acceptable in all cases, it can be seen that in
the wing rotation scenario, the number of elements with qual-

ity between 0.21 and 0.25 increases from 0 to 5, and most sig-
nificantly, the elements with quality between 0.31 and 0.35
increase from 2 to 23.

5. Conclusions and further work

The ability to adapt a computational grid upon deformations of

the geometry is a useful technique that avoids the need to rebuild
the mesh from the scratch in every optimization step. When
several components are involved, such as wing-fuselage or
e of wing in the third scenario.



Fig. 15 Surface grid adaptation upon deformation of upper side of wing by using NURBS (left) and details near leading edge (right).

Fig. 16 Grid adaptation using NURBS based strategy has

preserved underlying fuselage geometry.

Table 2 Mesh quality metrics comparison.

Item Min

quality

Max

quality

Mean

quality

Min

dihedral

Original 0.345960 0.999750 0.841128 12.75480

Bump 0.281948 0.999750 0.840175 14.30680

Rotation 0.214193 0.999820 0.840795 6.729990

Slide 0.332527 0.999754 0.840888 15.58810

Fig. 17 Histogram of quality metric intervals with respect to

number of mesh elements.

Table 3 Number of elements in each of grid quality intervals.

Interval Original Bump Rotation Slide

0–0.05 0 0 0 0

0.06–0.10 0 0 0 0

0.11–0.15 0 0 0 0

0.16–0.20 0 0 0 0

0.21–0.25 0 0 5 0

0.26–0.30 0 3 5 0

0.31–0.35 2 6 23 3

0.36–0.40 46 64 65 49

0.41–0.45 287 348 354 300

0.46–0.50 1415 1594 1473 1445

0.51–0.55 5490 5943 5639 5600

0.56–0.60 16791 17342 16972 16919

0.61–0.65 37583 38320 37784 37782

0.66–0.70 71120 72066 71465 71276

0.71–0.75 119721 120715 119996 119993

0.76–0.80 182178 183083 182332 182535

0.81–0.85 254927 255357 255191 254953

0.86–0.90 310805 309288 310117 310468

0.91–0.95 285834 284609 285659 285601

0.96–1.00 167650 165111 166769 166925
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wing-pylon configurations, an efficient treatment of the
intersections is required.

� A mesh deformation approach based on the underlying
CAD geometry has been proposed to re-calculate the

intersection.
� The proposed approach guarantees that the surface vertices
are restricted to the baseline CAD.

� The proposed strategy is most useful when there are two
NURBS panels.

� Limitations are detected when more than two NURBS
surfaces are involved in the intersection. Since surface

adaptation is restricted to the NURBS surface, in those
situations with multiple panels, it is not clear how to
propagate the deformation.

Further work will focus on the development of a strategy to
propagate the surface deformation through several NURBS

patches.
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