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Summary 

The application of surrogate-based methods to the constrained optimization of aerodynamic shapes is nowadays a very active 

research field due to the potential of these methods to reduce the number of actual computational fluid dynamics simulation runs, 

and therefore drastically speed-up the design process. However, their feasibility when handling a large number of design 

parameters, which in fact is the case in industrial configurations, remains unclear and needs further efforts, as demonstrated by 

recent research on design space reduction techniques and adaptive sampling strategies. This paper presents the results of applying 

surrogate-based optimization to the three-dimensional, constrained aerodynamic shape design of the DPW-W1 wing, involving 

both inviscid and viscous transonic flow. The wing geometry is parameterized by a control box with 36 design variables and the 

applied approach is based on the use of Support Vector Machines (SVMs) as the surrogate model for estimating the objective 

function, in combination with an Evolutionary Algorithm (EA) and an adaptive sampling technique focused on optimization, 

called the Intelligent Estimation Search with Sequential Learning (IES-SL).  

Keywords: Aerodynamic shape design, surrogate modeling, evolutionary programming, support vector machines, constrained 

optimization, transonic wing design 

 

1 Introduction and previous works 

1.1. Introduction 

In the last few years, there has been an increasing interest 

in the topic of Surrogate-based Optimization (SBO) methods 

for aerodynamic shape design. This is due to the promising 

potential of these methods to speed-up the design process by 

the use of a “low cost” objective function evaluation to reduce 

the required number of expensive computational fluid 

dynamics (CFD) simulations. However, the application of 

these SBO methods for industrial configurations still requires 

facing several challenges, such as the so-called “curse of 

dimensionality”, the ability of surrogates when handling a high 

number of design parameters, efficient constraints handling, 

adequate exploration and exploitation of the design space, etc. 

1.2. Recent research efforts in SBO for aerodynamic shape 

design 

A physics-based surrogate model was recently applied in 

[1] to the drag minimization of a NACA0012 airfoil in 

inviscous transonic flow and a RAE2822 airfoil in viscous 

transonic flow, both using the PARSEC parameterization with 

up to ten design parameters. The drag minimization problem 

was also addressed by SBO in [2] for the NLF0416 airfoil, 

parameterized with ten design parameters. 

Moreover, a combination of a genetic algorithm (GA) and 

an artificial neural network (ANN) was applied in [3] to the  

 

 

shape optimization of an airfoil, parameterized by a modified 

PARSEC parameterization involving ten design variables. In 

[4] a surrogate based on Proper Orthogonal Decomposition 

(POD) was applied to the aerodynamic shape optimization of 

an airfoil geometry parameterized by sixteen design variables 

defined with Class Shape Transformation method (CST). In 

summary, the ability of SBO methods to manage a high number 

of design parameters still remains an open challenge and have 

been studied by several authors in the last few years, as well as 

the strategies for efficient infill sampling criteria with 

constraint handling [4, 5]. 

 

Finally, the authors also presented recent works on this 

topic [6, 7]. This paper is an extension of previous research, 

here considering the constrained single-point aerodynamic 

optimization of the DPW-W1 wing for both inviscous and 

viscous transonic flow. 

1.3. GARTEUR AD/AG52 

This work is part of a GARTEUR (Group for Aeronautical 

Research and Technology in Europe, www.garteur.org) Action 

Group that was established to explore these SBO approaches. 

The main objective of the AG [8] is, by means of a European 

collaborative research, to make a deep evaluation and 

assessment of surrogate-based global optimization methods for 

aerodynamic shape design. 
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2 Definition of the optimization problem 

2.1. Baseline geometry: DPW-W1 wing 

The public domain transonic DPW-W1 wing (a test case of the 

Third AIAA Drag Prediction Workshop) was used [9, 10]. Reference 

quantities for this wing are displayed in the following table: 

 

Sref (wing ref. area) 290322 mm2 

Cref (wing ref. chord) 197.55 mm 

Xref 154.24 mm (relative to the wing 

root leading edge) 

b/2 (semi span)  762 mm 

AR (aspect ratio, 

AR=b2/Sref) 

8.0 

Table 1: DPW reference quantities 

The initial geometry (in IGES format) was downloaded from [9]. 

A set of grids are also available in the website of the 3rd AIAA 

Workshop on Drag Prediction.  

2.2. Parameterization 

The DPW geometry is parameterized by a 3D control box 

(displayed in Figure 1) with 5 control points in direction u, 10 

in direction v and 5 in direction w. The parametric u direction 

corresponds to the y axis, the v direction to the x axis, and the 

w direction to the z axis.  

The design variables are the vertical displacement of those 

control points set up on the aerodynamic surface. The wing is 

split in three profile sections and the transition between 

sections is linear. Each section has 6 active control points for 

the upper side and other 6 for the lower side, which are 

independent (the movement of a control point at the upper side 

does not modify the lower side and vice versa), with a total of 

36 design parameters for the whole wing. Authors have 

previously applied this parameterization technique to other 

local and global optimization problems [11]. During the 

optimization performed in this paper, the wing platform will be 

kept fixed, as well the angle of attack and the torsion. 

 

 
Figure 1: DPW wing parameterization 

2.3. Aerodynamic constraints 

The following aerodynamic constraints are considered: 

1) Prescribed constant lift coefficient (CL=CL
0) 

2) Minimum pitching moment: CM>=CM
0      

3) Drag penalty: If constraint in minimum pitching moment is 

not satisfied, the penalty will be 1 drag count per 0.01 

increment in CM. 

2.4. Geometric constraints 

Each design variable will be constrained by its minimum and 

maximum values that will be chosen as the + or – 20% of their original 

value. Apart from this, other constraints have been defined, according 

to [10]: 

1) Airfoils’ maximum thickness constraints:  
0

sec sec( / ) ( / )tion tiont c t c  

where the right term is the maximum thickness for the original wing 

sections, root, mid-span and tip, which has the value of 13.5%. 

 

2) Beam constraints 

First, two locations (x/c) are fixed to represent the beam constraints: 
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 The constraint here is that the thickness value of the optimized 

wing sections at these locations should be greater or equal than the 

thickness of the original ones. It is defined with the expressions: 
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2.5. Design point and objective function 

This paper addresses a single-point optimization of the DPW-

W1 wing, for both inviscous and viscous transonic flow. Multi-

point optimization will be also considered as a future work 

within the GARTEUR AG52 group [8]. The flow conditions 

are: Mach number 0.8, an angle of attack of zero degrees and a 

Reynolds number of 5*106.  The design goal is to achieve a 

geometry with the minimum drag, while maintaining the 

specified aerodynamic constraints. Aerodynamic constraints 

are implemented as penalties in the objective function. The 

pseudo-code implementation is: 
 

lift_penalty=1-(Cl/Cl0); 

if (lift_penalty<0) lift_penalty=0; 

cm_penalty = (Cm0-Cm)*0.0001/0.01; 

if (cm_penalty < 0) cm_penalty = 0; 

objective_function=(((Cd+cm_penalty)/Cd0 ) )+5*lift_penalty; 

2.6. Computational grids 

The following unstructured grids were used: 

 #points #surface 

points 

#elements #surface 

elements 

DPW-

EULER 

427k 135k 2112k 276k 

DPW 

RANS* 

3770k 152k 9335k 310k 

Table 2: Computational grids 

*The DPW RANS grid was downloaded directly from the 3rd 

Workshop on Drag Predition web page. 
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3 Description of the applied approach 

3.1. Adaptive sampling focused on optimization  

The Intelligent Estimation Search with Sequential Learning 

(IES-SL) is an algorithm designed to implement an adaptive 

sampling directly focused on the optimization search. From 

this point of view, the key feature of this novel approach is to 

use the surrogate model to estimate the location of the optimum 

in the real function. To do this, an optimization search is 

applied over the surrogate, obtaining an estimated value of the 

real minimum position (an “intelligent guess”). Each of the 

estimations of the optimum location gives us a new sampling 

point (it means a new geometry that is also analyzed using the 

high fidelity CFD solver). Within a try-and-error cycle, the 

surrogate proposes a new design which is again evaluated by 

the CFD solver and then, in a sequential learning, the surrogate 

model is enriched with the associated cost function. 

3.2. Support Vector Regression algorithm as surrogate model 

SVMs represent appealing algorithms for a large variety of 

regression problems due to they do not only take into account 

the error approximation to the data, but also the generalization 

of the model, namely, their capability to improve the prediction 

of the model when new data are evaluated. This kind of 

methods can be considered a specific type of ANNs, and are 

commonly trained by means of a deterministic method known 

as Sequential Minimal Optimization (SMO) which provides a 

significant computational complexity reduction. The used 

SVM method for regression consists of, given a set of training 

vectors },....,1),,{( liyxC ii  , training a model of the form

bxwbxfxy T  )()()(  , to minimize a general risk 

function of the form 
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where w controls the smoothness of the model,
 )(x  is a 

function of projection of the input space to the feature space, b 
is a parameter of bias, xi is a feature vector of the input space 

with dimension N, yi is the output value to be estimated and 
))(,( xfyL i

 is the loss function selected. In this paper, the L1-

SVR (L1 support vector regression) is used, characterized by 

an ε-insensitive loss function 


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In order to train this model, it is necessary to solve the 

following optimization problem 
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The SVM can use different kernels to face non-lineal problems. 

On this case, a radial basis function has been used as a kernel 

function. This training procedure must be combined with the 

search of three parameters (C, ε, and γ, named 

hyperparemeters) on which the final model depends. The 

influence of the three parameters on the SVM model can be 

seen on equations (3) where C defines the optimization 

problem and in equation (4) where ε represents the constraints 

for the optimization problems. Finally, the radial basis kernel 

depends on the value of γ. To obtain the best SVM 

performance, a search of the most suitable combination of 

these three parameters must be carried on, usually by using 

cross validation techniques over the training set. To reduce the 

computational time of this process, different methods have 

been proposed in the literature to reduce the search space 

related to these parameters. In this case, it has been applied the 

one developed in [12], which has proven to require pretty short 

search times. 

3.3. Evolutionary programming 

The EA implemented for this work has the following 

characteristics: the selection operator is applied by replacing a 

portion of the current generation by new individuals generated 

from parents. It is considered the replacement of the 

individuals in the population with fitness value under the 

population’s mean fitness. A multipoint crossover which 

selects the value of one of the parents with probability 0.5 is 

applied. Regarding the mutation operator, the values of each new 

individual are mutated with probability 1/Np, where Np is the 

number of parameters to be optimized. A mutation parameter 

can be tuned in order to allow a more global or local search 

over a certain design variable. More detailed information about 

the implemented algorithm can be found in [7]. 

3.4. Handling constrains within the optimization process 

In the context of evolutionary optimization, constraints can 

be handled by adding penalties to the objective function. These 

penalties can be imposed in a ‘soft’ or ‘hard’ manner. Soft 

penalties increment the unconstrained objective function 

proportionally with information about how far from the 

constraint is a certain solution. This kind of penalties allows 

the system to work with non-feasible but interesting solutions, 

improving the search space and finally obtaining feasible 

solutions. Hard penalties imply that the restriction must be 

fulfilled at any time of the optimization process. In this case, 

the solutions are strongly penalized and therefore removed 

from the search process. The constrained objective function is 

represented by the following expression: 

 

penalthardpenaltsoftfobjfobj __*   (5) 
where fobj* is the unconstrained objective function. 
 

In this paper, the constraints within the SBO process are 

handled in the following way. First, the simulation system M 

allows computing the aerodynamic characteristics (i.e. CD, CL, 

CM) of a geometry defined by a set of parameters P. 

)(],,[ PMCCC MLD   (6) 
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The objective function to be minimized, including the 

mentioned constraints, can be described as a combination of 

the output factors from the simulation system (aerodynamic 

characteristics), and other factors associated with the model 

(i.e. geometric characteristics). This function can be 

represented as: 

),,( , PCCCffobj MLD  (7) 

 

where the geometric restrictions are calculated from the set of 

model parameters P and the aerodynamic constrains are 

directly computed from the aerodynamic characteristics. Since 

the application of the simulator system to obtain the 

aerodynamic values is very expensive, the surrogate model is 

added to the system to reduce the computational cost of the 

optimization process. There are three different approaches to 

use the surrogate model to speed up the constrained objective 

function computation. 

The first option is to generate a surrogate that directly 

models the objective function. This is the simplest and more 

direct method to apply the surrogate. The individual evaluation 

on this case is carried on by the surrogate model (i.e. the SVM). 

),,()( , PCCCfPSVMfobj MLD  (8) 
 

The second option is to extract from the objective function 

the restrictions that are independent from the simulator output. 

In this case, the geometric constraints can be calculated 

independently: 

 

)(2),,(1

),,( ,

PfCCCf

PCCCffobj

MLD

MLD




 

),,(1)( MLD CCCfPSVM   (9) 

),,()(2)( , PCCCfPfPSVMfobj MLD  

 

This division reduces the complexity of the surrogate 

model, because it does not have to model the geometric 

information (only aerodynamic features).  On the other hand, 

the system must perform an additional computation since in 

each evaluation the system must compute both the SVM output 

and the value of f2. 

The third option is another step to simplify the surrogate 

model. The penalties in the objective function can add 

additional complexity to the function like discontinuities 

around the restriction boundaries. This can reduce the quality 

that a surrogate can achieve with a fixed number of data points. 

To avoid this effect, a multi-surrogate model can be 

implemented, and this is the approach considered in this paper. 

Each simulator output (i.e. CD, CL, CM), is modeled by a 

different SVM (SVM_Cd, SVM_Cl, SVM_Cm), and then 

applied to the f1 function that contains the aerodynamic 

restrictions.  
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(10) 

In this way, the penalties associated to f1, and their 

corresponding complexity, are added after building the 

surrogate, allowing achieving simpler SVM models, with 

higher quality and accuracy. On the other hand, the global 

system is more complex, since now it is necessary to train now 

three different surrogates.  

 

 

4 Numerical results 

The proposed approach is applied to the constrained single 

point optimization of the DPW-W1 wing in both inviscid and 

viscous transonic flow conditions. In order to handle the 

geometric constraints previously defined, the parameterization 

is prepared by locating certain control points in specific 

locations, as displayed in Figure 2. 

 

 
Figure 2: Geometric constraints handling through the selected 

control box parameterization (wing section) 

 

 

4.1. Inviscous transonic flow 

The following table shows the objective function of the 

original and optimized geometries. The results show that the 

objective function has been improved by 23% (after 192 

iterations), while both aerodynamic and geometric the 

constraints have been satisfied.  

 

 fobj Cd Cl Cm 

DPW-W1 1 0.0307 0.5984 -0.02867 

Optimized 0.77 0.0236 0.5981 -0.02653 
 

Table 3: Objective function and aerodynamic coefficients of 

baseline and optimized geometries 

Figures 3, 4 and 5 show the Mach number distribution, 

shapes and Cp comparison between the baseline geometry and 

the optimized shape. 
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Figure 3: Mach number distribution on the original (left) and 

optimized (right) geometries 

 

 
Figure 4: Original vs. optimized geometries 

 

 
Figure 5: Cp plots along wing span 

 

The computational time for the whole optimization of the 

Euler case using 8 processors on a Linux x86_64 

computational cluster was about 40 hours. 

 

4.2. Viscous transonic flow 

The following table shows the objective function of the 

original and optimized geometries. The results show that the 

objective function has been improved by 5%, while the 

constraints have been satisfied. In the full paper, the complete 

final results will be included, together with a grid sensitivity 

analysis in order to ensure that the optimization achieved is not 

due to grid issues. 

 

 fobj Cd Cl Cm 

DPW-W1 1 0.0257 0.3636 -0.0687 

Optimized 0.95 0.0245 0.3658 -0.0684 
 

Table 4: Objective function and aerodynamic coefficients of 

baseline and optimized geometries 

Figures 6, 7 and 8 show the shapes and Cp comparison 

between the baseline geometry and the optimized shape, which 

was obtained in the iteration number 175.  

 

The computational time for 175 iterations of the RANS 

case using 36 processors on a Linux x86_64 computational 

cluster was about 170 hours (7 days). 

 

 
Figure 6: Original vs. optimized geometries 

(preliminary results, optimization process not finished) 
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Figure 7: Cp plots along wing span 

(preliminary results, optimization process not finished) 

 

 
Figure 8: Cp distribution on the original (left) and optimized 

(right) geometries 

5 Conclusions 

This paper presented the application of a global 

optimization strategy using the Intelligent Estimation Search 

with Sequential Learning (IES-SL) and the hybridization of EA 

and SVMr to the single-point constrained optimization of a 

three dimensional DPW wing in both inviscid and viscous 

transonic flow conditions, showing first promising results.  

Future work will address the multi-point constrained 

optimization, for comparison with the results obtained by 

Epstein and Jameson in [10]. This extension will be performed 

within the GARTEUR AG52 group. In addition, research work 

on the parameterization sensitivity to the SBO process is also 

being performed. 
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