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Summary 

The development of an automatic geometry optimization tool for efficient aerodynamic shape design, supported by 

Computational Fluid Dynamic (CFD) methods is nowadays an attractive research field, as can be observed from the increasing 

number of scientific publications during the last years. Surrogate-based global optimization methods have demonstrated a huge 

potential to reduce the actual number of CFD runs, and therefore drastically speed-up the design process. Nevertheless, surrogates 

need initial high fidelity data sets to be built and to reach a proper accuracy. This work presents a study on the influence of the 

initial training dataset size in the proposed approach behavior. This approach is based on the use of Support Vector Machines 

(SVMs) as the surrogate model for estimating the objective function, in combination with an Evolutionary Algorithm (EA) and 

an adaptive sampling technique focused on optimization called the Intelligent Estimation Search with Sequential Learning (IES-

SL). Several number of training points have been fixed to check the convergence, the accuracy and the objective function reached 

by the method. 

Keywords: aerodynamic shape design, evolutionary optimization, computational fluid dynamics, surrogate-based optimization, 

surrogate modelling. 

 

1 Introduction 

Aerodynamic shape optimization by means of automatic 

tools is an industrial relevant field that has to breast several 

challenges. Some of these challenges are: how to handle 

deformations in certain regions (such as intersections between 

wing and fuselage or pylon/nacelle), how to reduce the number 

of CFD runs required for performing aerodynamic design 

optimization or how to tackle integrated components. 

Furthermore, surrogate-based optimization methods require 

several barriers to be broken when applied to complex 

configurations, such as the called “curse of dimensionality”, 

the ability of surrogates to handle a high number of design 

parameters, efficient constraints handling1, and the proper 

exploration and exploitation of the whole design space. 

 

In the case of surrogate-based optimization (SBO) 

methods, the surrogate prediction is also highly influenced by 

training set size. A huge training set with a proper design space 

distribution ensures reaching a global optimum, but requires a 

vast computational cost to be built. On the other hand, a small 

training set is fast to be built but the accuracy is not enough for 

optimization purposes. A solution to this issue must be found 

for the suitable implementation of this method in the 

aeronautical industry. 

 

In this work, Support Vector Machines (SVM) combined 

with Evolutionary Algorithms (EAs) and an adaptive sampling 

method, called Intelligent Estimation Search with Sequential 

Learning (IES-SL), is proposed. The approach is applied to the 

multipoint optimization of one typical test case, i.e., the 

transonic RAE 2822 airfoil. The aim of this work is to provide 

an analysis of the training set size influence in the behavior of 

the IES-SL approach proposed. 

 

This paper is structured as follows. In Section 2, a review 

of the recent research efforts in SBO applied to aircraft design 

is presented. Section 3 presents the applied SBO strategy and 

Section 4 collects the study results. Finally, the conclusions 

extracted from the results are summarized in Section 5. 

2 Literature review 

2.1. Recent research efforts in SBO applied to aircraft design 

Some recent efforts in SBO for aerodynamic shape design 

includes, e.g., a physics-based surrogates applied to the drag 

minimization of NACA 0012 and RAE 2822 airfoils in 
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transonic flow conditions2. In this work, the geometries were 

parameterized using PARSEC involving 5 to 10 design 

parameters. SBO strategies were applied for the drag 

minimization of the NLF0416 airfoil using 10 design 

variables3. Variable-fidelity computational fluid dynamics 

(CFD) combined with shape optimization strategy was applied 

to the optimization of a transonic airfoil parameterized by the 

NACA 4-digit definition with three design variables4. 

A surrogate based on proper orthogonal decomposition 

(POD) applied to the aerodynamic shape optimization of an 

airfoil is presented by Iuliano5. The geometry was 

parameterized with 16 design variables defined with the CST 

method. An approach based on a combination of a genetic 

algorithm and an artificial neural network is presented by 

Jahangirian6. This approach was applied to the shape 

optimization of an airfoil, which was parameterized by a 

modified PARSEC involving 10 design variables. 

Most of the SBO applications in aerodynamic shape 

optimization involve two-dimensional configurations, where 

the number of design variables is usually limited. Nevertheless, 

some applications to three-dimensional configurations can be 

found in literature. An investigation about SBO applied to a 

wing parameterized with 11 design variables was undertaken 

by Keane7 .A multi-fidelity surrogate model applied to a three-

dimensional wing optimization was addressed by Likeng8 [8].  

In this case, the design parameters were a combination of 12 

variables using the CST method for three wing sections (root, 

hink and wing tip). Lukaczyk9 , proposed a method based on 

an active subspace for effectively searching the whole design 

space. The method is applied to the optimization of the 

ONERA M6 transonic wing, which was parameterized with 50 

FFD design variables. The aim was to discover a low-

dimensional linear subspace of the input space that explained 

the majority of the variability in the drag and lift coefficients. 

An SBO application to the aerodynamic shape design of a wing 

parameterized with volumetric non-uniform rational B-splines 

(NURBS) was presented by current authors10.  Also, in [11, 12] 

current authors present an application study about the influence 

of number and location of the design parameters in the 

behaviour of the IES-SL method applied to the aerodynamic 

shape optimization. The selected geometries, RAE 2822 airfoil 

and DPW-w1 wing, were parameterized with volumetric 

NURBS. 

This work is within the aerodynamic shape design and 

optimization research line of INTA’s Fluid Dynamics Branch. 

3 Surrogate-based optimization strategy 

This section introduces each of the components of the SBO 

approach applied in this study: geometry parameterization through 

volumetric NURBS, Evolutionary Algorithms (EAs), Support Vector 

Machines for Regression (SVR) and the Intelligent Estimation Search 

with Sequential Learning (IES-SL) as the strategy for adaptive 

sampling focused on optimization. 

 

3.1. Geometry parameterization 

Parameterization is a crucial step in an aerodynamic design 

optimization problem. NURBS have demonstrated to be able 

to accurately represent a large family of geometries. In 

aerodynamic design, NURBS provide smooth surfaces while 

maintaining some deformation locality13. In addition, the 

optimized surface at the end of the optimization process has the 

correct format to feed directly the CAD and grid generation 

applications. However, the use of surface NURBS can be 

impractical, because very frequently requires the additional 

effort to develop a surface representation that fits the original 

geometry, with an appropriated arrange of control points for 

the optimization. An alternative approach is to envelop the 

geometry in a volumetric NURBS14, which maintain the 

deformation properties of a conventional 2-dimensional 

surface, but with the advantage that control points can be set 

up arbitrarily.  

From a mathematical point of view, NURBS surfaces are 

defined as the tensor product of three NURBS curves, defining 

a volumetric region, where the deformation is governed by the 

movement of control points: 

𝑆(𝜉, 𝜂, 𝜇) =
∑ ∑ ∑ 𝑈𝑖,𝑛(𝜉) 𝑉𝑖,𝑛(𝜂) 𝑊(𝜇)

𝐾
𝑘 𝐶𝑖𝑗𝑘

𝐽
𝑗

𝐼
𝑖

∑ ∑ ∑ 𝑈𝑖,𝑛(𝜉) 𝑉𝑖,𝑛(𝜂) 𝑊(𝜇)
𝐾
𝑘

𝐽
𝑗

𝐼
𝑖

 (1) 

where C are the control points,𝜉, 𝜂,and 𝜇 are the parametric 

coordinates,  and U, V,and W are the basis functions which are 

calculated using the following expression: 
 

𝑈𝑖,1(𝜉) = {
1 𝑖𝑓 𝑢𝑖 ≤ 𝜉 <  𝑢𝑖+1
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑈𝑖,𝑘(𝜉) =
(𝜉 − 𝑢𝑖)𝑈𝑖,𝑘−1(𝜉)

𝑢𝑖+𝑘−1 − 𝑢𝑖
+
(𝑢𝑖+𝑘 − 𝜉)𝑈𝑖+1,𝑘−1(𝜉)

𝑢𝑖+𝑘 − 𝑢𝑖+1
 

(2) 

The basis coefficients are calculated from the knot vectors 

 𝑈̅, 𝑉̅ and 𝑊̅, and, which are a sequence of real numbers. Basis 

functions are equal to zero everywhere except for an interval 

delimited by the order of the NURBS, defining the area of 

influence of each control point15. The most common 

implementation of the control box is to employ uniform basis, 

which can be obtained with a knot sequence as: 

{0, … ,0⏟  ,

𝑝 + 1

1

𝑁
… ,
𝑖

𝑁
,… ,
𝑁 − 1

𝑁
, 1, … ,1⏟  

𝑝 + 1

} (3) 

First order is equivalent to a linear interpolation, while 

second and third orders provide derivative and curvature 

continuity, respectively.  

In this work, the airfoil is parameterized with third order 

volumetric NURBS, also called control box, and the design 

variables will be the vertical displacements (z axis) of the 14 

control points. Figure 1 depicts the selected parameterization. 

To clarify, there are additional control points at the trailing 

and leading edge that are kept fixed, in order to maintain the 

angle of attack; so these control points are not considered as 

design variables. 
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Figure 1. RAE 2822 control box parameterization 

3.2. Evolutionary Algorithm 

Evolutionary algorithms (EAs) are bio-inspired methods 

that clone the behaviour of natural evolution to solve complex 

optimization problems. The basic elements of an EA are the 

solution coding, the selection operator and the crossover and 

mutation operator.  

In the design application to be considered in this work, each 

coding vector is composed by a given parameterization of a 

geometry, i.e.,𝑧 =  [𝑐𝑝1, 𝑐𝑝2, 𝑐𝑝3, . . . , 𝑐𝑝𝑁], where 𝑐𝑝 is the 

vertical coordinates of each control point. 

 

More details about the EA applied in this paper can be found 

in a previous work from the authors17. 

 

3.3. Objective function approximation using Support Vector 

Machines (SVMs) 

Support vector machines acts as a meta-model to predict the 

objective function to be optimized, which in this case is given 

by the aerodynamic performance of de airfoil. 

Support Vector machines for Regression are a powerful 

tool used on the machine learning field, and a modelling tool 

for a large amount of regression problems on engineering. The 

SVR can be solved as a convex optimization problem using 

kernel theory to face nonlinear problems. The SVR consider 

not only the prediction error but also the generalization of the 

model. To obtain the best performance, a search of the most 

suitable combination of the kernel parameters must be carried 

on, usually by using cross validation techniques over the 

training set. To reduce the computational time of this process, 

different methods have been proposed in the literature to 

reduce the search space related to these parameters. In this 

case, it has been applied the one developed by Ortiz-García et 

al.16 which has proven to require pretty short search times. 

 

More details about the SVR surrogate model applied in this 

paper can be consulted in a previous work from the authors17. 

3.4. Flowchart of the proposed approach 

In this article, The Intelligent Estimation Search with 

Sequential Learning (IES-SL) method is applied.  This method 

allows performing an efficient adaptive sampling guiding the 

optimization algorithm towards the most promising regions of 

the design space. The flowchart of the proposed approach is 

depicted in Figure 2. First, an initial set of randomly generated 

(including the baseline) geometries are selected and evaluated 

with CFD tool (DLR Tau code in this work). With this set, a 

first surrogate is built and linked within an evolutionary 

algorithm. The latter will search for the minimum of the 

surrogate in each of the optimization iterations, and the 

returned optima will be again evaluated using the high-fidelity 

CFD solver, and then incorporated to the surrogate model, 

which is rebuilt and more precise on each iteration. The process 

will end when a certain number of CFDs budget is reached.  

The aim of this work is to study the influence of the initial 

training size in the precision of the surrogate and the 

convergence of the proposed approach. 
 

 

Figure 2. Flowchart of the proposed approach. 

4 Numerical results 

4.1. Baseline geometry 

The selected geometry for this study was the well-known 

RAE2822 airfoil. The airfoil is a rear-loaded, sub-critical 

geometry, designed to exhibit a roof-top type pressure 

distribution at design conditions (Mach = 0.66, Cl = 0.5618). It 

has been tested in the RAE wind tunnel in 11 different flow 

conditions in the range of Mach numbers from 0.676 to 0.750 

and at several Reynolds numbers19. 

 

Chord [m] 0.61 

Maximum thickness-to-chord ratio 0.0121 at x/c=0.38 

Maximum camber-to-chord ratio 0.0126 at x/c=0.76 

Leading edge radius [m] 0.00827 

Airfoil area [m2] 0.0776 

Trailing edge angle 9o 

Table 1. Baseline airfoil features. 

 
 A 56k points unstructured grid was generated for this study.  

4.2. Test case definition 

The proposed approach is applied to 5 optimizations cases 

with 4, 8, 16, 32 and 64 initial random training points 

respectively. The multipoint optimization problem of the RAE 

2822 is selected. The flow conditions for both design points 1 

& 2 are: 



EUROGEN 2011 September 14–16, 2011, Capua, Italy 

4 

 

 

 DP1 DP2 

Mach 0.734 0.754 

Re 6.5M 6.2M 

Turb. Model SA κω TNT 

The objective function selected was 𝑀𝑖𝑛 (
𝐶𝐷

𝐶𝐿
) with some 

considerations. These are: 

 Aerodynamics constraints and penalties: 

1. Prescribed minimum lift coefficient: 

𝐶𝑙
0|𝑘: 𝐶𝑙|𝑘 ≥ 𝐶𝑙

0|𝑘 

2. Prescribed minimum pitching 

coefficient:  𝐶𝑚
0 |𝑘: 𝐶𝑚|𝑘 ≥ 𝐶𝑚

0 |𝑘 

3. Drag penalty: if constraint on minimum 

pitching moment is not satisfied, the penalty 

will be 1 drag count per 0.01 in  ∆𝐶𝑚 

 Geometric constraints 

1. Limit: +/- 20% of the initial control points’ 

values. 

2. Prescribed maximum thickness ratio 

(t c⁄ )max:  max
   
(t c⁄ ) = (t c⁄ )max 

3. Prescribed minimum thickness ratio 

(t c⁄ )min
80  at x = 0.8c :(t c⁄ )80 ≥ (t c⁄ )min

80  

4. Prescribed minimum leading edge nose 

radius Rmin
le  :  Rle ≥ Rmin

le  

 

4.3. Sensitivity study results 

In this section, the results of the present study are presented. 

Three issues are analysed. First, the influence of the initial 

training size in the convergence of the method. Next, the 

influence in the method precision of the initial data set. Finally, 

the value of the objective function reached in each case. 

Regarding the first analysis, Figure 3 shows the 

convergence of the IES-SL for each test case. As can be seen, 

the five test cases have a huge oscillation during the “training 

period”. This is the expected behaviour since the points in this 

data set are generated randomly. A lower size of initial training 

means the optimizer requires more iterations to reach the 

“optimum region”. The reason is that the initial surrogate is 

more intelligent with a huge initial data set, but it requires more 

time to be built. At last, the five test cases reach the same 

optimum region (see Table 2). 

Figure 4 illustrates the accuracy of the method with respect 

the initial training size. As expected, an initial surrogate with a 

vast number of points has an initial accuracy higher than one 

with a small set of points. This is in the same line that the 

convergence. Nevertheless, it requires more time to start the 

optimum seek. 

 

 

 

 

 

 
Figure 3. SBGO convergence vs. initial data set size 

 

Last, but not least, Table 2 summarizes the value of the OF 

reached in each case. It can be seen that there is no influence 

of the initial training size in the final value of the OF (with a 

reasonable budget of iterations). This is the main advantage of 

the IES-SL proposed. 
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Figure 4. Approach accuracy for each initial training size 

# Initial Training random 

points 

Objective Function 

(OF) 

4 0.6014 

8 0.6059 

16 0.6021 

32 0.6016 

64 0.5993 
Table 2. OF evolution respect the initial training size 

 

5 Conclusions 

The aim of this work was to provide an analysis about how 

the initial training size of the surrogate affects the behaviour of 

the proposed IES-LS method. The following conclusions have 

been extracted from the solutions: 

 

-- The optimum region reached is the same independently the 

training set size. A model with higher initial data set size 

requires less iterations to reach de optimum region, but it 

requires more computational time to be built, which is not 

feasible from the industry point of view. 

-- In the same trend, the initial accuracy of the surrogate 

increases with the number of training samples, but the 

drawback is the same which is exposed in the previous point.  

-- As summarized in Table 2, the training set size has no 

influence in the OF reached by the proposed IES-SL approach. 

 

In summary, the main advantage of the proposed SBO 

method is that it can reach the global optimum with a small 

number of initial samples. This is feasible due to sequential 

learning allows the surrogate to become accurate each iteration. 

So, there’s an important reduction of the initial computational 

cost that requires a standard offline SBO. 
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