
ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10  June 2016 

CONSTRAINED MULTI-POINT AERODYNAMIC SHAPE 

OPTIMIZATION OF THE VISCOUS DPW WING THROUGH 

EVOLUTIONARY PROGRAMMING AND SUPPORT VECTOR 

MACHINES 

Daniel González-Juárez1,2, Esther Andrés-Pérez3, and Mario J. Martin-Burgos1 

1 Fluid Dynamics Branch, Spanish National Institute for Aerospace Technologies (INTA)  

Ctra. de Ajalvir Km. 4.5.  28850 Torrejón de Ardoz 

e-mail: {gonzalezjd,martinbj}@inta.es 

2 Thermal & Fluid Dynamics Department, Technical University of Cartagena (UPCT) 

3 Engineering Department, Ingeniería de Sistemas para la Defensa de España S.A. (ISDEFE-INTA) & 

Technical University of Madrid (UPM) 

Ctra. de Ajalvir Km. 4.5.  28850 Torrejón de Ardoz 

Email: eandres@isdefe.es, esther.andres@upm.es 

Keywords: Aerodynamic shape design, Surrogate-based global optimization, Evolutionary program-

ming, Computational Fluid Dynamics. 

Abstract. This work presents an application of Surrogate-Based Optimization (SBO) to the 

multipoint constrained design of the 3D DPW wing [1]in viscous transonic flow conditions. 

The geometry is parameterized by a control box with 36 design variables. An adaptive sampling 

technique focused on the optimization problem, the Intelligent Estimation Search with Sequen-

tial Learning (IES-LS), is applied. The selected SBO approach is based on the use of Support 

Vector Machines (SVMs) as the surrogate model for estimating the objective function, in com-

bination with an evolutionary algorithm (EA) to enable the discovery of global optima. The aim 

of this work is to complement a previous one [2] by adding a study of the capability of this 

method to obtain an improvement for this multipoint constrained three-dimensional test case.
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1 INTRODUCTION 

In the last few years, there has been an increasing interest in the topic of Surrogate-based 

Optimization (SBO) methods for aerodynamic shape design. This is due to the promising po-

tential of these methods to speed-up the design process by the use of a “low cost” objective 

function evaluation to reduce the required number of expensive computational fluid dynamics 

(CFD) simulations. However, the industrial applications of these SBO methods has still to face 

several challenges, as for instance, the ability of surrogates when handling a high number of 

design parameters, efficient constraints handling, adequate exploration of the design space, etc. 

The aim of this work is to complement a previous one [2] by adding a study of the capability 

of this method to obtain an improvement for a constrained multipoint three-dimensional viscous 

test case. 

This work is under the scope of the GARTEUR Action Group (AD/AG52) [3], with the 

objective of providing a comprehensive survey about different surrogate methods for surrogate-

based aerodynamic shape optimization, started at the beginning of 2013. Within this AG, re-

search activities are planned over four-year period, with the objective of performing a fair com-

parison between different surrogate modeling methods applied to the aerodynamic optimization 

of baseline geometries, sharing the parameterization (volumetric NURBS) and mesh defor-

mation algorithms.. 

2 PREVIOUS WORK 

A physics-based surrogate model was recently applied in [4] to the drag minimization of a 

NACA0012 airfoil in inviscid transonic flow and RAE2822 airfoil in viscous transonic flow, 

both using PARSEC parameterization with up to ten design parameters. The drag minimization 

problem was also addressed by SBO in [5] for the NFL0416 airfoil, parameterized with ten 

design parameters. 

Moreover, a combination of a generic algorithm (GA) and an artificial neural network (ANN) 

was applied in [6] to the shape optimization of an airfoil, parameterized by a modified PARSEC 

parameterization involving ten design variables. In [7] a surrogate based on Proper Orthogonal 

Decomposition (POD) was applied to the aerodynamic shape optimization of an airfoil geom-

etry parameterized by sixteen design variables defined with Class Shape Transformation 

method (CST). In summary, the ability of SBO methods to manage a high number of design 

parameters still remains an open challenge and have been studied by several authors in the last 

few years, as well as the strategies for efficient infill sampling criteria with constraint handling. 

[7, 8]. 

Finally, the authors also presented recent works on this topic [2, 9]. This paper is an exten-

sion of previous research, here considering the constrained multi-point aerodynamic optimiza-

tion of the DPW-W1 wing for viscous transonic flow. 

3 PROPOSED APPROACH 

A surrogate-based global optimization method with an adaptive sampling strategy is used, 

called ‘The intelligent Estimation Search with Sequential Learning (IES-SL)’. Support Vector 

Machines for regression (SVMr) are combined with Evolutionary Algorithms (EA) in order to 

perform an efficient adaptive sampling guiding the optimization algorithm towards the most 

promising regions of the design space. The geometry is parameterized with volumetric Non-

Uniform Rational B-Splines which vertical movements are the design variables for this study.  

As can be observed, it comprises two steps: First, the algorithm generates an initial database 

by evaluating a small number of random designs (four in this application study). The initial 
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surrogate model is then generated using this reduced database. Then, the algorithm searches for 

the position of the optimum value with the surrogate model to use it as an estimation for the 

real optimum position [10]. The estimated optimum is evaluated using the CFD solver, obtain-

ing a new pair [design, cost] that will enrich the database. After that, the surrogate is updated 

by adjusting it to the complete database and the cycle is finished, starting again the search for 

the new sample. When the maximum number of iterations is reached, the optimum design is 

obtained as the best parameters on the database. In this way, it is ensured that the design ob-

tained is optimum with respect to the simulator system (CFD solver) and not only to the surro-

gate model. For more information about the SVMr, EAs and IES-SL readers can consult  [5, 6, 

11, 12] 

4 DEFINITION OF THE OPTIMIZATION PROBLEM 

4.1 Baseline geometry: DPW-W1 wing  

The public domain transonic DPW-W1 wing (a test case of the Third AIAA Drag Prediction 

Workshop) was used [1, 10]. Reference quantities for this wing are displayed in the following 

table: 

Sref (wing ref. area) 290322 mm2  

Cref (wing ref. chord) 197.55 mm  

Xref*  154.24 mm  

b/2 (semi span)  762 mm  

AR (aspect ratio, AR=b2/Sref) 8.0  
*(relative to the wing root leading edge) 

Table 1. DPW reference quantities 

The initial geometry (in IGES format) was downloaded from [10]. A set of grids are also 

available in the website of the 3rd AIAA Workshop on Drag Prediction. 

4.2 Parameterization 

The DPW geometry is parameterized by a 3D control box (displayed in Figure 1) with 5 

control points in direction u, 10 in direction v and 5 in direction w. The parametric u direction 

corresponds to the y axis, the v direction to the x axis, and the w direction to the z axis.  

The design variables are the vertical displacement of those control points set up on the aer-

odynamic surface. The wing is split in three profile sections and the transition between sections 

is linear. Each section has 6 active control points for the upper side and other 6 for the lower 

side, which are independent (the movement of a control point at the upper side does not modify 

the lower side and vice versa), with a total of 36 design parameters for the whole wing. Authors 

have previously applied this parameterization technique to other local and global optimization 

problems [11]. During the optimization performed in this paper, the wing platform will be kept 

fixed, as well the angle of attack and the torsion. 
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Figure 1. DPW wing parameterization 

 

4.3 Aerodynamic constraints 

The following aerodynamic constraints are considered: 

1. Prescribed constant lift coefficient (CL=CL
0) 

2. Minimum pitching moment: CM>=CM
0      

3. Drag penalty: If constraint in minimum pitching moment is not satisfied, the penalty 

will be 1 drag count per 0.01 increment in CM. 

4.4 Geometric constraints 

Each design variable will be constrained by its minimum and maximum values that will be 

chosen as the + or – 20% of their original value. Apart from this, other constraints have been 

defined, according to [1]: 

1) Airfoils’ maximum thickness constraints:  

0

sec sec( / ) ( / )tion tiont c t c  

where the right term is the maximum thickness for the original wing sections, root, mid-span 

and tip, which has the value of 13.5%. 

 

2) Beam constraints: 

First, two locations (x/c) are fixed to represent the beam constraints: 
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 The constraint here is that the thickness value of the optimized wing sections at these lo-

cations should be greater or equal than the thickness of the original ones. It is defined with the 

expressions: 

 

9.5)/(%,9.5)/(%,9.5)/(

%12)/(%,12)/(%,12)/(

2,2,2,

1,1,1,









tipspanmidroot

tipspanmidroot

ctctct

ctctct
 

 

 

 

4085



Daniel González-Juárez, Esther Andrés-Pérez and Mario J. Martin-Burgos 

 

 

 

4.5 Test cases definition & objective function 

The proposed approach is applied to the multipoint aerodynamic shape optimization of a 

DPW-W1 wing in viscous transonic flow. The specific flow conditions are exposed in Table 2 

for both Design Points (DP) 

 DP1 DP2 

M 0.76 0.78 

Re 5×106 5×106 

AoA 0 0 

Turbulence SA SA 

Table 2. Test cases definition 

The design goal is to achieve a geometry with the minimum drag, while maintaining the 

specified aerodynamic constraints. Aerodynamic constraints are implemented as penalties in 

the objective function. The pseudo-code implementations is: 

 

lift_penalty=1-(Cl/Cl0); 

if (lift_penalty<0) lift_penalty=0; 

cm_penalty = (Cm0-Cm)*0.0001/0.01; 

if (cm_penalty < 0) cm_penalty = 0; 

objective_function=(((Cd+cm_penalty)/Cd0 ) )+5*lift_penalty; 

4.6 Computational grid 

The DPW RANS grid was directly downloaded from [10]. The features of the unstruc-

tured grid are: 

#points #surface points #elements #surface elements 

3770k 152k 9335k 310k 

Table 3. Computational grid features 
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5 NUMERICAL ASSESSMENT 

5.1 DPW-W1 optimization results  

This section shows the results of the optimization approach exposed in previous sections. 

Table 4 summarizes the DPW the results of the optimization process. Results exhibit a reduc-

tion of 3 & 6 drag counts respectively for each DP which are in the same order that the results 

obtained in [1] 

 

 DP1 DP2 
fobj 

 CL CD CM CL CD CM 

DPW-W1 0.3632 0.0205 -0.0674 0.3718 0.0222 -0.0692 

0.9746 Optimized 0.3637 0.0202 -0.0677 0.3712 0.0216 -0.0695 

Δ 0.0005 -0.0003 -0.0003 0.0006 -0.0006 -0.0003 

Table 4.DPW-W1 optimization results 

Figure 2 depicts the baseline and optimized airfoils along wing span. 

 

Figure 2. Baseline vs. optimized geometry 

Figure 3 andFigure 4 show the Cp distribution @ 25% 50% and 75% of wing span while 

Figure 5 andFigure 6 contains the Cp contours for both baseline and optimized geometries at 

each flow conditions. 
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Figure 3. Cp distribution for DP1 along wing span 

 

Figure 4. Cp distribution for DP2 along wing span 
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Figure 5. Cp contours for baseline and optimized geometries @ DP1 flow conditions 

 

Figure 6.  Cp contours for baseline and optimized geometries @ DP2 flow conditions 
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6 CONCLUSION 

This paper presented the application of a global optimization strategy using the Intelligent Es-

timation Search with Sequential Learning (IES-SL) and the hybridization of EA and SVMr to 

the multi-point constrained optimization of a three dimensional DPW wing in viscous transonic 

flow conditions, showing first promising results. Future work will focus on the combination of 

this approach with traditional gradient-based methods to perform a deep comparison and also 

an enrichment of the search space in the evolutionary optimization algorithm. 
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