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Abstract. Nowadays, one of the priorities of the European Commission is to reduce the envi-

ronmental impact of aviation through the advanced design of novel aircraft configurations. 

This implies that new methods and tools for aerodynamic shape optimization will have to be 

developed, allowing aircraft configurations that cannot be obtained with traditional strategies. 

Evolutionary optimization algorithms have the potential to find a global optimal candidate but 

on the other hand, they involve a vast number of evaluations, which are CFD runs in aerody-

namic analysis. The use of surrogate modeling has been proposed in the literature [1, 2] as a 

suitable method to speed up the global optimization process. This work presents an application 

of a surrogate-based global optimization method (SBGO) to the aerodynamic shape optimiza-

tion of a 2D infinite circular cylinder in laminar flow conditions. The geometry of this test case 

is parameterized by a Non-Rational B-Splines (NURBS) control box with 10 design variables. 

An approach based on Support Vector Machines (SVMs) in combination with Evolutionary 

Algorithms (EA) is applied.
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1 INTRODUCTION 

Currently there is a strong need of computational tools for the design of the type of aircraft 

that will be demanded by the European industry, according to the guidelines stated at the 

ACARE 2020 [3] and 2050 [4] flight paths. The aeronautical industry agrees that these objec-

tives make necessary the design of an innovative aircraft shape rather than further local im-

provements in the traditional wing-body-tail configuration. Efficient and accurate shape design 

optimization tools, able to consider novel concepts through the use of flexible geometry param-

eterization, are becoming a must for the aeronautical industry. Considering this, aerodynamic 

shape design and optimization problems based on evolutionary algorithms and surrogate mod-

els (also called surrogate-based optimization or SBO) have recently found widespread use in 

aeronautics, due to the potential to reach optimal configurations that are far away from their 

baseline geometries, and therefore their ability to enable non-conventional aircraft configura-

tions. In addition, their increasing applicability in aerodynamic shape optimization problems is 

also due to the promising potential of these methods to speed-up the whole design process by 

the use of a “low cost” objective function evaluation to reduce the required number of expensive 

computational fluid dynamics (CFD) simulations.  

However, the application of these SBO methods for industrial configurations still requires 

facing several challenges. The most crucial challenges nowadays are the so-called “curse of 

dimensionality”, the ability of surrogates when handling a high number of design parameters, 

efficient constraints handling, adequate exploration and exploitation of the design space, and 

last but not least, how to deal with grid deformations in case of large displacements, which is 

always the case when trying to achieve novel configurations from the traditional ones. 

This work focuses on the application of enhanced methods in aerodynamic shape design 

optimization to enable novel aircraft configurations. In particular, it aims to demonstrate the 

feasibility of a combined approach, based on Evolutionary algorithms and Support Vector Ma-

chines, to reach optimal configurations that are far away from its baseline geometry. In order 

to validate this, the optimization approach is applied to the selected baseline geometry, a land-

ing gear master cylinder, resulting on optimal configurations for each of the defined flow con-

ditions. This very simple test case (clean cylinder) has been selected for several reasons: it will 

allow to validate the potential of the proposed approach to reach non-conventional configura-

tions (those which are far from the initial one), and in addition, it is of interest for an European 

aircraft manufacturing industry, which is looking for flow optimization in this region. However, 

in order to further exploit the results in industry, more complex geometries and constraints, 

including also structural aspects should have to be taken into consideration. 

2 PREVIOUS WORK 

A physics-based surrogate model was recently applied in [5] to the drag minimization of a 

NACA0012 airfoil in inviscid transonic flow and RAE2822 airfoil in viscous transonic flow, 

both using PARSEC parameterization with up to ten design parameters. The drag minimization 

problem was also addressed by SBO in [6] for the NFL0416 airfoil, parameterized with ten 

design parameters. 

Moreover, a combination of a generic algorithm (GA) and an artificial neural network (ANN) 

was applied in [7] to the shape optimization of an airfoil, parameterized by a modified PARSEC 

parameterization involving ten design variables. In [8] a surrogate based on Proper Orthogonal 

Decomposition (POD) was applied to the aerodynamic shape optimization of an airfoil geom-

etry parameterized by sixteen design variables defined with Class Shape Transformation 

method (CST). In summary, the ability of SBO methods to manage a high number of design 

parameters still remains an open challenge and have been studied by several authors in the last 
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few years, as well as the strategies for efficient infill sampling criteria with constraint handling. 

[8, 9]. 

3 PROPOSED APPROACH 

A surrogate-based global optimization method with an adaptive sampling strategy is used, 

called ‘The intelligent Estimation Search with Sequential Learning (IES-SL)’. Support Vector 

Machines for regression (SVMr) are combined with Evolutionary Algorithms (EA) in order to 

perform an efficient adaptive sampling guiding the optimization algorithm towards the most 

promising regions of the design space. The geometry is parameterized with volumetric Non-

Uniform Rational B-Splines which vertical movements are the design variables for this study.  

As can be observed, it comprises two steps: First, the algorithm generates an initial database 

by evaluating a small number of random designs (four in this application study). The initial 

surrogate model is then generated using this reduced database. Then, the algorithm searches for 

the position of the optimum value with the surrogate model to use it as an estimation for the 

real optimum position [1]. The estimated optimum is evaluated using the CFD solver, obtaining 

a new pair [design, cost] that will enrich the database. After that, the surrogate is updated by 

adjusting it to the complete database and the cycle is finished, starting again the search for the 

new sample. When the maximum number of iterations is reached, the optimum design is ob-

tained as the best parameters on the database. In this way, it is ensured that the design obtained 

is optimum with respect to the simulator system (CFD solver) and not only to the surrogate 

model. For more information about the SVMr, EAs and IES-SL readers can consult [6, 7, 10, 

11]. 

4 DEFINITION OF THE OPTIMIZATION PROBLEM 

4.1 Geometry parameterization 

The cylinder grid is deformed through a volumetric b-spline, as shown in Figure 1. The 

design variables are the control points located on the upper and lower side, which can freely 

move in any direction, while the control points located in the middle are kept fixed during 

optimization. In this method, the original geometry is deformed by the movement of control 

points in a similar way than the Free Form Deformation technique (FFD) [12], but in contrast 

to FFD, deformations of the upper-side and lower-side are considered independently one of 

each other, which provides more flexibility. 

The computational surface grid vertices are mapped into the NURBS (Non-Uniform Ra-

tional B-Splines) space through the parametric coordinates, which are previously calculated 

using an appropriate inversion point algorithm [12, 13]). These parametric coordinates are in-

variant throughout the optimization, allowing to recalculate the spatial coordinates at any time 

of the process. A second mapping is performed on the cylinder geometry, by means of a discrete 

uniform rasterization, in order to accurately calculate the volume throughout the optimization. 

4094



Esther Andrés-Pérez, Daniel González-Juárez, Mario J. Martin-Burgos, Leopoldo Carro-Calvo and Sancho Salcedo-Sanz 

 

This geometry mapping is done in parallel, independently of the computational grid and it is 

used for handling the volume constraints within the optimization process.   

  

 

Figure 1. Parameterization of the cylinder. 2D (left) and 3D (right) views. 

4.2 Test cases definition  

The approach is applied to the aerodynamic shape optimization of a cylinder parameterized 

as shown in section 4.1, with the problem formulation defined on Table 1. The location of the 

design parameters on the surface of the test case was previously displayed in Figure 1. A sym-

metric movement of the upper and lower face control points was imposed. The objective func-

tion was to minimize drag while preserving, at least, the 80% of the baseline volume, which 

was considered the minimum valid volume due to structural requirements. This volume preser-

vation was implemented as a strong penalization of the objective function, which allows ex-

ploring the whole design space even if several geometries will finally be discarded by the 

optimization algorithm. Furthermore, DV’s are allowed to move ± 60% of their initial value in 

both directions, horizontal and vertical. 

 

M Re 

0,05 1214 

0,1 2490 

0,15 3735 

0,2 4980 

0,25 6226 

0,3 7471 

0,35 8716 

0,4 9961 

Table 1. Problem formulation (the Re reference length considered is the cylinder diameter) 

The optimization study was performed for a range of Mach numbers from 0.05 and 0.4, 

meaning a Reynolds below 105 (Table 1), ensuring laminar boundary layer separation condi-

tions, as can be observed in Figure 2 [15]. This problem formulation allows using laminar flow 

conditions, therefore reducing the required computational cost (compared with turbulence 

RANS modeling).  
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Figure 2. Drag coefficient versus Reynolds number for an infinite circular cylinder [15]. 

4.3 Drag minimization of a 3D cylinder for different flow conditions  

In this section, the approach is applied to the drag minimization and results are displayed in 

Table 2 & Table 3. In particular, Table 2 shows the optimization results regarding the whole 

objective function (which includes both drag and volume values considerations), where it can 

be seen that the total reduction of the objective function was between 73-77% of its original 

value. Table 3 shows the drag coefficient values of the original and optimized geometries. It 

can be observed that the drag was minimized between 92-94% of its original value in the base-

line geometry (depending on the Mach number considered), while at the same time fulfilling 

the constraints imposed in the volume. 

M 0.05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 

OFbaseline 0,39248 0,30123 0,26356 0,24341 0,23173 0,22510 0,22124 0,21910 

OFoptim 0,08918 0,07525 0,06751 0,06385 0,06031 0,05784 0,05740 0,05817 

%Improvement 77,28% 75,02% 74,39% 73,77% 73,97% 74,31% 74,05% 73,45% 

Table 2. Optimization results (OF means objective function) 

M 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 

C-dragbaseline 0,95672 0,84988 0,80707 0,78708 0,77838 0,77638 0,77909 0,78578 

C-dragoptim 0,06924 0,05842 0,05241 0,04957 0,04682 0,04490 0,04472 0,04570 

C-dragoptim_p  0,05391 0,04875 0,04507 0,04353 0,04162 0,04033 0,04057 0,04189 

C-dragoptim_v 0,01532 0,00967 0,00733 0,00604 0,00520 0,00457 0,00415 0,00381 

%Improve-
ment 

92,76% 93,13% 93,51% 93,70% 93,98% 94,22% 94,26% 94,18% 

Table 3. Optimization results (C-drag minimization) 

From the mentioned tables, it can be also observed that the gain in the objective function 

tends to decrease with the Mach number while, on the other hand, the improvement in the drag 

coefficient tends to increase. This behavior is explained because the optimizer proposes thinner 

shapes as the Mach number increases, producing a geometry with less drag, but also less volume, 

which is penalized in its global objective function. 

The optimized shapes returned by the optimizer are displayed in Figure 3. For clearness, 

only the baseline geometry and the optimized geometries for Mach numbers 0.10, 0.20, 0.30 
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and 0.40 are shown. It can be observed that all the optimized shapes are similar except the one 

returned for Mach=0.40, where the optimizer returns a geometry with a wider area near the 

trailing edge, in order to ensure the volume constraint, even when it will affect the drag value. 

 

 

Figure 3. Comparison of baseline and optimal shapes for Mach numbers 0.10, 0.20, 0.30 and 0.40 

Finally, ¡Error! No se encuentra el origen de la referencia. shows the Mach number 

contours of the original (left) and optimized (right) geometries for each of the Mach numbers 

considered in the range [0.05, 0.4]. As expected, a pair of vortices (bigger with the Mach num-

ber) appear downstream of the baseline geometry. In the optimized shapes, the cross-sectional 

area has been reduced as much as the geometric and volume constraints allows. This explains 

the vortices disappearance and the drag reduction, as expected from the aerodynamic point of 

view, since the objective function was to reduce drag while maintaining the volume. Some 

asymmetric effects can be seen in the Mach contours of the optimized geometries, which are 

due to asymmetric volume grid deformation since the geometric surface deformation is propa-

gated to the volume. 
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M=0.05 

  

 
 

 

 

 

Figure 4. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.05 and 0.1 

 

 

 

 

 

 

 

 

 

 

M=0.1 
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M=0.15 

  

 
 

 

 

Figure 5. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.15 and 0.2 

 

 

 

 

 

 

 

 

 

M=0.2 
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Figure 6. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.25 and 0.3 

 

 

 

 

 

M=0.25 

  

 

M=0.3 
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M=0.35 

  

 
 

 

Figure 7. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.35 and 0.4 

 

M=0.40 
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5 CONCLUSION 

This article presented the application of a global optimization strategy using the Intelligent 

Estimation Search with Sequential Learning (IES-SL) and the hybridization of EA and SVMr 

to the aerodynamic shape optimization of a clean cylinder representing a simple model of the 

landing gear master cylinder. The objective of this work was to demonstrate the feasibility of 

the proposed strategy to reach optimal configurations that are far from the baseline geometry. 

This approach allows extensively exploring the design space, without any dependence on 

an initial solution and expensive CFD computations, since it uses a metamodel (based on SVMr) 

to estimate the aerodynamic coefficients. At the same time, accuracy is ensured, because in 

each iteration the result is validated with the CFD tool. 

REFERENCES  

[1]  E. Andrés, S. Salcedo-Sanz, F. Mongue y A. Pérez-Bellido, «Efficent aerdoynamic design 

through evolutionary programming and support vector regression algorithms,» Expert 

Systems with Applications, vol. 39, pp. 10700-10708, 2012.  

[2]  A. I. Forrester y A. J. Keane, «Recent advances in surrogate-based optimization,» 

Progress in Aerospace Sciences, vol. 45, nº 1-3, p. 5079, 2009.  

[3]  ACARE, «Aeronautics and Air Transport: Beyond vision 2020 (towards 2050),» 

Advisory Council or Aeronautics Research in Europe, 2010. 

[4]  P. Argüelles y M. Bischoff, «European Aeronautics: A vision for 2020. ACARE». 

[5]  L. Leifsson, S. Koziel y Y. Tesfahungen, «Aerodynamic Design Optimization: Physics-

based Surrogate Approaches for Airfoil and Wing Design,» de AIAA SciTech, 2014.  

[6]  S. Koziel y L. Leifsson, «Multi-Level Surrogate-Based Airfoil Shape Optimization,» de 

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and 

Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, 2013.  

[7]  A. Jahangirian y A. Shahrokhi, «Aerodynamic shape optimization using efficent 

evolutionary algorithms and unstructured CFD solver,» Computers & FLuids, vol. 46, pp. 

270-276, 2011.  

[8]  E. Iuliano y D. Quagliarella, «Aerodynamic Shape Optimization via non-intrusive POD-

based Surrogate Modeing,» de IEEE Congress on Evolutionary Computation, Cancún, 

Mexico, 2013.  

[9]  J. Parr, C. Holden, A. Forrester y A. Keane, «Review of Efficent Surrogate Infill Sampling 

Criteria with Constraint Handling,» de 2nd International Conference on Engineering 

Optimization, Lisbon, Portugal, 2010.  

[10]  Y. Jin, «Multi-Level Surrogate-Based Airfoil Shape Optimization,» de 51st AIAA 

Aerospace Sciences Meeting including the New Horizons Forum and Aerospace 

Exposition, Grapevine (Dallas/Ft. Worth Region), Texas AIAA2013-0778., 2013.  

[11]  E. Ortiz-García, S. S. Sanz, Á. M. Pérez-Bellido y J. A. Portilla-Figueras, «Improving the 

training time of support vector regression algorithms through novel hyper-parameters 

search space reductions,» Neurocomputing, 2009.  

[12]  D. Chauhan, C. Praveen y R. Duvigneau, «Wing Shape Optimization Using FFD and 

Twist Parametrization,» Aerospace Sciences and Technologies, pp. 225-230, 2010.  

4102



Esther Andrés-Pérez, Daniel González-Juárez, Mario J. Martin-Burgos, Leopoldo Carro-Calvo and Sancho Salcedo-Sanz 

 

[13]  M. Martin, E. Andrés, M. Widhalm, P. Bitrian y C. Lozano, «Non-Uniform Rational B-

Splines based aerodynamic shape optimization with DLR TAU code,» Proceedings of the 

Institution of Mechanical Engineers, part G, Journal of Aerospace Engineering, vol. 226, 

nº 10, pp. 10-13, 2012.  

[14]  M. Martin, E. Andrés, E. Valero y C. Lozano, «Volumetric B-splines shape 

parametrization for aerodynamic shape,» Aerospace Science and technology, vol. 37, pp. 

26-36, 2014.  

[15]  D. Tritton, Physical FLuid Dynamics 2nd Ed, Oxford University Press, 1998.  

[16]  B. Epstein, A. Jameson, S. Peigin, D. Roman, N. Harrison y J. Vassberg, «Comparative 

Study of 3D Wing Drag Minimization by Different Optimization Techniques.,» de 46th 

AIAA Aerospace Sciences Meeting and Exhibit. AIAA paper 2, Reno, Nevada, 2008.  

[17]  E. Andrés, D. González, M. J. Burgos y L. Carro, «Constrained Single-Point 

Aerodynamic Shape Optimization of the DPW-W1 wing through Evolutionary 

Programming and Support Vector Machines,» de International Conference on 

Evolutionary and Deterministic Methods for Design, Optimization and Control 

(EUROGEN 2015), Glasgow, 2015.  

[18]  «Garteur AD/AG52 members 2013. Partial report on Surrogate-based Global 

Optimization Methos in Aerodynamic Design. http://ag52.blogspot.com.es/». 

[19]  D. González, E. Andrés, M. Burgos, L. Carro y S. Salcedo, «Influence of geometry 

parameterization in aerodynamic shape design of aeronautical configurations by 

evolutionary algorithms,» de 6th European Conference for Aeronautics and Space 

Sciences (EUCASS), Krakow, Poland, 2015.  

[20]  «AIAA 3rd Drag Prediction Workshop. URL: http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-

dpw/Workshop3/workshop3.html,» [En línea].  

[21]  M. Martin, E. Andrés, E. Valero y C. Lozano, «Gradients Calcultion for Arbitrary 

Parameteizations via Volumetric NURBS: The Control Box Approach,» de EUCASS, 

2013.  

 

 

4103


